24.(本题10分)28.如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°

24.(本题10分)28.如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°【操作】将三角板DEF的直角顶点E放置于三角板AB... 24.(本题10分)28.如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°
【操作】将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E旋转,并使边DE与边AB交于点P,边EF与边BC于点Q
【探究一】在旋转过程中,
(1) 如图2,当 时,EP与EQ满足怎样的数量关系?并给出证明.
(2) 如图3,当 时EP与EQ满足怎样的数量关系?,并说明理由.
(3) 根据你对(1)、(2)的探究结果,试写出当 时,EP与EQ满足的数量关系式为_________,其中 的取值范围是_______(直接写出结论,不必证明)
【探究二】若,AC=30cm,连续PQ,设△EPQ的面积为S(cm2),在旋转过程中:
(1) S是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由.
(2) 随着S取不同的值,对应△EPQ的个数有哪些变化?不出相应S值的取值范围.
展开
 我来答
纠结之理
2011-05-02 · 超过14用户采纳过TA的回答
知道答主
回答量:62
采纳率:0%
帮助的人:0
展开全部
..探究一:(1)连接BE,根据E是AC的中点和等腰直角三角形的性质,得
BE=CE,∠PBE=∠C,
又∠BEP=∠CEQ,
则△BEP≌△CEQ,得EP=EQ;

(2)作EM⊥AB,EN⊥BC于M,N,根据两个角对应相等,得
△MEP∽△NEQ,
∴EP:EQ=EM:EN=AE:CE=1:2;
(3)

过E点作EM⊥AB于点M,作EN⊥BC于点N,
∵在四边形PEQB中,∠B=∠PEQ=90°,
∴∠EPB+∠EQB=180°,
又∵∠EPB+∠MPE=180°
∴∠MPE=EQN
∴Rt△MEP∽Rt△NEQ
探究二:(1)设EQ=x,则S= x2,
所以当x=10 时,面积最小,是50;
当x=10 时,面积最大,是75.

(2)当x=EB=5 时,S=62.5,
故当50<S≤62.5时,这样的三角形有2个;
当S=50或62.5<S≤75时,这样的三角形有一个.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
ycy19970203
推荐于2016-09-08
知道答主
回答量:7
采纳率:0%
帮助的人:9.2万
展开全部
探究一:(1)连接BE,根据E是AC的中点和等腰直角三角形的性质,得
BE=CE,∠PBE=∠C,
又∠BEP=∠CEQ,
则△BEP≌△CEQ,得EP=EQ;

(2)作EM⊥AB,EN⊥BC于M,N,根据两个角对应相等,得
△MEP∽△NEQ,
∴EP:EQ=EM:EN=AE:CE=1:2;
(3)

过E点作EM⊥AB于点M,作EN⊥BC于点N,
∵在四边形PEQB中,∠B=∠PEQ=90°,
∴∠EPB+∠EQB=180°,
又∵∠EPB+∠MPE=180°
∴∠MPE=EQN
∴Rt△MEP∽Rt△NEQ

在Rt△AME∽Rt△ENC

∴ ,EP与EQ满足的数量关系式为1:m,
∴0≤m≤2+ ;

探究二:(1)设EQ=x,则S= x2,
所以当x=10 时,面积最小,是50;
当x=10 时,面积最大,是75.

(2)当x=EB=5 时,S=62.5,
故当50<S≤62.5时,这样的三角形有2个;
当S=50或62.5<S≤75时,这样的三角形有一个.
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Key家滴希仔
2011-05-12 · 超过11用户采纳过TA的回答
知道答主
回答量:27
采纳率:0%
帮助的人:29.6万
展开全部
同楼上 我们也做这道题今天,少条件~~~~
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
星云梦永恒
2011-05-02 · TA获得超过461个赞
知道小有建树答主
回答量:223
采纳率:0%
帮助的人:153万
展开全部
没图怎么做??
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2011-05-02
展开全部
czegerg
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式