设a,b分别是m*n,n*s矩阵且b为行满值矩阵,证明:r(ab)=r(a)的详细解题

 我来答
茹翊神谕者

2021-05-16 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1612万
展开全部

简单计算一下即可,答案如图所示

备注

匿名用户
2017-08-27
展开全部
证明: 首先有 r(AB) ≤ min(r(A),r(B)) ≤ r(A).
再由B为行满秩, r(B) = n
所以B可经过初等行变换化为 (En,B1).
所以存在可逆矩阵P使 PB = (En,B1), 且有 r(AP^(-1))=r(A)
故有 r(AB) = r((AP^(-1))(PB)) = r((AP^(-1))(En,B1))
= r(AP^(-1),AP^(-1)B1)≥r(AP^(-1)) = r(A).
综上有 r(AB) = r(A) #
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
lry31383
高粉答主

推荐于2017-09-05 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.6亿
展开全部
证明: 首先有 r(AB) ≤ min(r(A),r(B)) ≤ r(A).
再由B为行满秩, r(B) = n
所以B可经过初等行变换化为 (En,B1).
所以存在可逆矩阵P使 PB = (En,B1), 且有 r(AP^(-1))=r(A)
故有 r(AB) = r((AP^(-1))(PB)) = r((AP^(-1))(En,B1))
= r(AP^(-1),AP^(-1)B1)≥r(AP^(-1)) = r(A).
综上有 r(AB) = r(A) #

此题用到分块矩阵的方法以及多个知识点, 需耐心领会!
满意请采纳^_^.
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2011-05-10
展开全部
用分块矩阵证
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式