这题左边是我的解法,右边是答案过程,为什么我用柯西不等式只能证明到左大于右? 10
1个回答
展开全部
柯西不等式可以简单地记做:平方和的积 ≥ 积的和的平方。它是对两列数不等式。取等号的条件是两列数对应成比例。
如:两列数
0,1
和
2,3
有
(0^2 + 1^2) * (2^2 + 3^2) = 26 ≥ (0*2 + 1*3)^2 = 9.
形式比较简单的证明方法就是构造一个辅助函数,这个辅助函数是二次函数,于是用二次函数取值条件就得到Cauchy不等式。
还有一种形式比较麻烦的,但确实很容易想到的证法,就是完全把Cauchy不等式右边-左边的式子展开,化成一组平方和的形式。
我这里只给出前一种证法。
Cauchy不等式的形式化写法就是:记两列数分别是ai, bi,则有
(∑ai^2) * (∑bi^2) ≥ (∑ai * bi)^2.
我们令
f(x) = ∑(ai + x * bi)^2
= (∑bi^2) * x^2 + 2 * (∑ai * bi) * x + (∑ai^2)
则我们知道恒有
f(x) ≥ 0.
用二次函数无实根或只有一个实根的条件,就有
Δ = 4 * (∑ai * bi)^2 - 4 * (∑ai^2) * (∑bi^2) ≤ 0.
于是移项得到结论。
学了更多的数学以后就知道,这个不等式可以推广到一般的内积空间中,那时证明的书写会更简洁一些。我们现在的证明只是其中的一个特例罢了。
如:两列数
0,1
和
2,3
有
(0^2 + 1^2) * (2^2 + 3^2) = 26 ≥ (0*2 + 1*3)^2 = 9.
形式比较简单的证明方法就是构造一个辅助函数,这个辅助函数是二次函数,于是用二次函数取值条件就得到Cauchy不等式。
还有一种形式比较麻烦的,但确实很容易想到的证法,就是完全把Cauchy不等式右边-左边的式子展开,化成一组平方和的形式。
我这里只给出前一种证法。
Cauchy不等式的形式化写法就是:记两列数分别是ai, bi,则有
(∑ai^2) * (∑bi^2) ≥ (∑ai * bi)^2.
我们令
f(x) = ∑(ai + x * bi)^2
= (∑bi^2) * x^2 + 2 * (∑ai * bi) * x + (∑ai^2)
则我们知道恒有
f(x) ≥ 0.
用二次函数无实根或只有一个实根的条件,就有
Δ = 4 * (∑ai * bi)^2 - 4 * (∑ai^2) * (∑bi^2) ≤ 0.
于是移项得到结论。
学了更多的数学以后就知道,这个不等式可以推广到一般的内积空间中,那时证明的书写会更简洁一些。我们现在的证明只是其中的一个特例罢了。
追问
请等我用电脑仔细看一遍手机看不太清楚,谢谢您的回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询