高一数学必修5数列大题
设数列{an}的首项a1属于(0,1),an=(3-a(n-1))/2,n=2,3,4,……①求{an}的通项公式②设bn=an根号(2-2an),证明bn<b(n-1)...
设数列{an}的首项 a1属于(0,1),an=(3-a(n-1))/2 , n=2,3,4,……
①求{an}的通项公式
②设 bn=an根号(2-2an) ,证明 bn <b(n-1) , 其中 n为正整数。
题目不小心打错了
第二问应该是 设 bn=an根号(3-2an),证明 bn <b(n+1) , 其中 n为正整数。
再看看吧 展开
①求{an}的通项公式
②设 bn=an根号(2-2an) ,证明 bn <b(n-1) , 其中 n为正整数。
题目不小心打错了
第二问应该是 设 bn=an根号(3-2an),证明 bn <b(n+1) , 其中 n为正整数。
再看看吧 展开
展开全部
1.an-1=-1/2[a(n-1) - 1]
所以an-1是等比数列,公比是-1/2,所以an-1=(-1/2)^(n-1) (a1-1)
an=1+ (a1-1)*(-1/2)^(n-1)
2.有问题,a1<1,那么a2=(3-a1)/2>1,根号内的小于0么?
所以an-1是等比数列,公比是-1/2,所以an-1=(-1/2)^(n-1) (a1-1)
an=1+ (a1-1)*(-1/2)^(n-1)
2.有问题,a1<1,那么a2=(3-a1)/2>1,根号内的小于0么?
追问
我题目改好了、再看看吧、
追答
这就好说了,因为a1∈(0,1)
所以an=1+ (a1-1)*(-1/2)^(n-1)>0并且an不等于1
也就是bn>0
b²(n+1)=a²(n+1)【3-2a(n+1)】=(3-an)²an /4
所以b²(n+1) - b²n =an(3-an)² /4 -a²n(3-2an) =an(9/4a²n-9/2an +9/4)=9/4an(an-1)²
由之前所得可以知道
b²(n+1) - b²n >0,即b²(n+1) > b²n,所以 bn <b(n+1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询