(2007?石景山区一模)如图,在四棱锥P-ABCD中,底面ABCD为等腰梯形,AB∥CD,AD=BC=2,对角线AC⊥BD于O
(2007?石景山区一模)如图,在四棱锥P-ABCD中,底面ABCD为等腰梯形,AB∥CD,AD=BC=2,对角线AC⊥BD于O,∠DAO=60°,且PO⊥平面ABCD,...
(2007?石景山区一模)如图,在四棱锥P-ABCD中,底面ABCD为等腰梯形,AB∥CD,AD=BC=2,对角线AC⊥BD于O,∠DAO=60°,且PO⊥平面ABCD,直线PA与底面ABCD所成的角为60°,M为PD上的一点.(Ⅰ)证明:PD⊥AC;(Ⅱ)求二面角A-PB-D的大小.
展开
1个回答
展开全部
解:(I)∵PO⊥平面ABCD
∴DO为DP在平面ABCD内的射影
又AC⊥BD
∴AC⊥PD
(Ⅱ)过O作ON⊥PB于N,连接AN.
∵PO⊥平面ABCD,
又AO?平面ABCD,
∴PO⊥AO
由已知AO⊥BD,BD∩PO=O
∴AO⊥平面PBD.
∴ON为AN在平面PBD内的射影,
∴PB⊥AN.
∴∠ANO为二面角A-PB-D的平面角.
在Rt△AOD中,AO=1.
∵PO⊥平面ABCD,
∴OA为PA在底面ABCD内的射影
∴∠PAO为直线PA与底面ABCD所成的角,
∴∠PAO=60°
∴Rt△POA中,PO=
∵四边形ABCD为等腰梯形
∴△ABD≌△BAC
∴∠ABD=∠BAC
∴OA=OB=1(8分)
在Rt△POB中,PB=2
∴ON=
=
=
.
在Rt△AON中,tan∠ANO=
=
=
.
∴二面角A-PB-D的大小为arctan
.
∴DO为DP在平面ABCD内的射影
又AC⊥BD
∴AC⊥PD
(Ⅱ)过O作ON⊥PB于N,连接AN.
∵PO⊥平面ABCD,
又AO?平面ABCD,
∴PO⊥AO
由已知AO⊥BD,BD∩PO=O
∴AO⊥平面PBD.
∴ON为AN在平面PBD内的射影,
∴PB⊥AN.
∴∠ANO为二面角A-PB-D的平面角.
在Rt△AOD中,AO=1.
∵PO⊥平面ABCD,
∴OA为PA在底面ABCD内的射影
∴∠PAO为直线PA与底面ABCD所成的角,
∴∠PAO=60°
∴Rt△POA中,PO=
3 |
∵四边形ABCD为等腰梯形
∴△ABD≌△BAC
∴∠ABD=∠BAC
∴OA=OB=1(8分)
在Rt△POB中,PB=2
∴ON=
PO?OB |
PB |
| ||
2 |
| ||
2 |
在Rt△AON中,tan∠ANO=
AO |
ON |
1 | ||||
|
2
| ||
3 |
∴二面角A-PB-D的大小为arctan
2
| ||
3 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询