已知:如图,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于点M,交CD的延长线于点F.

(1)求证:AM=DM;(不用三角形相似证)(2)若DF=2,求菱形ABCD的周长.... (1)求证:AM=DM;(不用三角形相似证)
(2)若DF=2,求菱形ABCD的周长.
展开
美妙英姿458
2011-05-17 · TA获得超过5.5万个赞
知道大有可为答主
回答量:3.1万
采纳率:0%
帮助的人:3919万
展开全部
解:(1)证明:∵四边形ABCD是菱形,
∴∠BAC=∠DAC.
又∵EF⊥AC,
∴AE=AM= 12AB= 12AD,
∴AM=DM.

(2)AB∥CD,
∴∠AEM=∠F.
又∠FMD=∠AME,△DFM是等腰三角形,
∴∠AME=∠AEM.
∴DF=DM= 12AD.
∴AD=4.
∴菱形ABCD的周长是16
王者若成风5130
2012-07-31 · TA获得超过5.6万个赞
知道大有可为答主
回答量:3万
采纳率:0%
帮助的人:3967万
展开全部
证明:(1)连接BD,
∵四边形ABCD是菱形,
∴AO平分∠BAD,AC⊥BD,
∵EF⊥AC,点E是AB中点,
∴EM是△ABD的中位线,
∴M是AD的中点;
(2)在△AME和△DMF中,
∵∠EAM=∠FDM,AM=DM,∠AME=∠DMF,
∴△AME≌△DMF,
∴DF=AE,
∵AE=1 2 AB=1 2 CD,
∴DF=1 2 CD.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
干彦芝ra
2011-05-18 · TA获得超过1056个赞
知道小有建树答主
回答量:730
采纳率:0%
帮助的人:381万
展开全部
证明:连接BD,则:BD⊥AC,
所以:EF‖BD(垂直同一条直线的两条直线平行)
而:BE‖DF
所以:四边形EBDF是平行四边形
所以:FD=EB
而AE=BE
所以:AE=DF
由于:AE‖DF
所以:∠F=∠AEM,∠FDM=∠EAM
所以:△FDM≌△EAM
所以:AM=DM

若DF=2,则AB=2DF=4.即菱形的边长为4,所以:菱形周长为16
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式