数学:求∑(∞,n=1)n(n+1)/2^n 的和.
3个回答
展开全部
∑(∞,n=1)n(n+1)/2^n
consider
1/(1-x) = 1+x+x^2+....
1/(1-x)^2 = 1+2x+3x^2+... (两边取导)
x/(1-x)^2 = x + 2x^2+3x^3+....
x=1/2
∑(∞,n=1)n/2^n = 2
------------------------------
x/(1-x)^2 = x + 2x^2+3x^3+....
[(1-x)^2 + 2x(1-x) ]/(1-x)^4 = 1+ 2^2.x +3^2.x^2 +.... (两边取导)
(-x^2+1)/(1-x)^4 = 1+ 2^2.x +3^2.x^2 +....
x(-x^2+1)/(1-x)^4 = 1^2.x+ 2^2.x^2 +3^2.x^3 +....
x=1/2
∑(∞,n=1)n^2/2^n = (1/2) ( -1/4 +1)/( 1/2)^4 = 6
----------
∑(∞,n=1)n(n+1)/2^n
=∑(∞,n=1)n^2/2^n +∑(∞,n=1)n/2^n
=6+2
=8
consider
1/(1-x) = 1+x+x^2+....
1/(1-x)^2 = 1+2x+3x^2+... (两边取导)
x/(1-x)^2 = x + 2x^2+3x^3+....
x=1/2
∑(∞,n=1)n/2^n = 2
------------------------------
x/(1-x)^2 = x + 2x^2+3x^3+....
[(1-x)^2 + 2x(1-x) ]/(1-x)^4 = 1+ 2^2.x +3^2.x^2 +.... (两边取导)
(-x^2+1)/(1-x)^4 = 1+ 2^2.x +3^2.x^2 +....
x(-x^2+1)/(1-x)^4 = 1^2.x+ 2^2.x^2 +3^2.x^3 +....
x=1/2
∑(∞,n=1)n^2/2^n = (1/2) ( -1/4 +1)/( 1/2)^4 = 6
----------
∑(∞,n=1)n(n+1)/2^n
=∑(∞,n=1)n^2/2^n +∑(∞,n=1)n/2^n
=6+2
=8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-05-20
展开全部
1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询