已知向量a=(√3 sin2/x,cos2/x),b=(cos2/x,-cos2/x),函数f(x)=a·b (1)求f(x)的单调递增区间;
展开全部
a=(√3sinx/2,cosx/2),b=(cosx/2,-cosx/2)
f(x)=a·b=√3sin(x/2)cos(x/2)-(cosx/2)^2=(√3/2)sinx-(1/2)cosx-1/2=sin(x-π/6)-1/2
令2kπ-π/2<x-π/6<2kπ+π/2
得2kπ-π/3<x<2kπ+2π/3
所以f(x)的单调增区间是[2kπ-π/3,2kπ+2π/3](k是整数)
f(x)=a·b=√3sin(x/2)cos(x/2)-(cosx/2)^2=(√3/2)sinx-(1/2)cosx-1/2=sin(x-π/6)-1/2
令2kπ-π/2<x-π/6<2kπ+π/2
得2kπ-π/3<x<2kπ+2π/3
所以f(x)的单调增区间是[2kπ-π/3,2kπ+2π/3](k是整数)
追问
(2)若x属于(0,π/2),f(x)=-1/6,求cosx的值。
追答
0<x<π/2
-π/6<x-π/6<π/3
f(x)=-1/6
则sin(x-π/6)-1/2=-1/6
即sin(x-π/6)=1/2-1/6=1/3
所以cos(x-π/6)=√(1-(1/3)^2)=2√2/3
那么cosx=cos(x-π/6+π/6)=cos(x-π/6)cos(π/6)-sin(x-π/6)sin(π/6)=(2√2/3)*(√3/2)-(1/3)*(1/2)=√6/3-1/6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询