2个回答
展开全部
证明如下:由已知可得△ABC为等腰△所以∠B(即∠ABC)=∠C(即∠ACB),同时由于BD=ED,所以△BDE也是等腰△,所以有∠DBC=∠DEB(即∠E),同理△DCE也是等腰△,所以有∠E=∠EDC。综上有:∠DBC=∠E=∠EDC。由于∠E+∠EDC=C(三角形两内角和=第三角的补角)所以∠E+∠DBC=∠C,由于∠ABD+∠DBC=∠B=∠C,所以∠ABD=∠DBC,又BD⊥AC所以∠ADB=∠CDB=90°,所以∠A=∠C,则有△ADB全等于△CDB(ASA,即角边角定理),所以AD=CD,又由于CE=CD所以有AD=CE。(注:这只是其中一种方法,你还可以证明△ABC为等边三角形)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询