证明不等式:a,b,c属于 R,a^4+b^4+c^4大于等于abc(a+b+c)
2个回答
展开全部
证明:
【1】
易知,恒有:
(a²-b²)²+(b²-c²)²+(c²-a²)²≧0.
等号仅当a²=b²=c²时取得。
展开,整理可得:
a^4+b^4+c^4≧a²b²+b²c²+c²a².
【2】
由“基本不等式:x²+y²≧2xy"可得:
a²b²+b²c²≧2b²ac.
b²c²+c²a²≧2c²ab.
c²a²+a²b²≧2a²bc.
以上等号仅当a=b=c时取得。
把上面三个不等式相加,整理可得:
a²+b²+c²≧abc(a+b+c).
【3】
综合上面两个不等式,可得:
a^4+b^4+c^4≥abc(a+b+c).
【1】
易知,恒有:
(a²-b²)²+(b²-c²)²+(c²-a²)²≧0.
等号仅当a²=b²=c²时取得。
展开,整理可得:
a^4+b^4+c^4≧a²b²+b²c²+c²a².
【2】
由“基本不等式:x²+y²≧2xy"可得:
a²b²+b²c²≧2b²ac.
b²c²+c²a²≧2c²ab.
c²a²+a²b²≧2a²bc.
以上等号仅当a=b=c时取得。
把上面三个不等式相加,整理可得:
a²+b²+c²≧abc(a+b+c).
【3】
综合上面两个不等式,可得:
a^4+b^4+c^4≥abc(a+b+c).
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询