如图所示,在梯形ABCD中,AD‖BC,DB‖AF,对角线AC,BD相交于点E,如果△ADE和△BCE的面积分别是4和9,求△A
2个回答
展开全部
由AD‖BC,可知△ADE与△BCE相似,所以其面积比为边长比的平方,所以边长比AD:BC=2:3=AE:CE,所以CE:AC=3:5。由DB‖AF,可知△CDE与△CFA相似,所以面积比为边长比平方,所以S△CDE:S△CFA=9:25,所以S△CFA=25。
由AD‖BC,DB‖AF,可知AFBD为平行四边形,所以AD=FB,又因△ABF与△ACD等高,所以S△ABF=S△ACD,所以S梯形ABCD=S△ABC+S△ACD=S△ABC+S△ABF=S△CFA=25
由AD‖BC,DB‖AF,可知AFBD为平行四边形,所以AD=FB,又因△ABF与△ACD等高,所以S△ABF=S△ACD,所以S梯形ABCD=S△ABC+S△ACD=S△ABC+S△ABF=S△CFA=25
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询