已知sin(π/4+a)=1/4,则sin2a的值为
展开全部
已知sin(π/4+a)=1/4,则sin2a的值为
解:∵sin(π/4+α)=1/4,∴α=arcsin(1/4)-π/4
故sin2α=sin2[arcsin(1/4)-π/4]=sin[2arcsin(1/4)-π/2)]=-sin[π/2-2arcsin(1/4)]
=-cos[2arcsin(1/4)]=-[1-2sin²arcsin(1/4)]=-1+2sin²arcsin(1/4)=-1+2(1/4)²=-1+1/8=-7/8.
或简单一点:
sin2a=-cos(π/2+2a)=-cos[2(π/4+a)]=-[1-2sin²(π/4+a)]=-1+2(1/4)²=-1+1/8=-7/8
解:∵sin(π/4+α)=1/4,∴α=arcsin(1/4)-π/4
故sin2α=sin2[arcsin(1/4)-π/4]=sin[2arcsin(1/4)-π/2)]=-sin[π/2-2arcsin(1/4)]
=-cos[2arcsin(1/4)]=-[1-2sin²arcsin(1/4)]=-1+2sin²arcsin(1/4)=-1+2(1/4)²=-1+1/8=-7/8.
或简单一点:
sin2a=-cos(π/2+2a)=-cos[2(π/4+a)]=-[1-2sin²(π/4+a)]=-1+2(1/4)²=-1+1/8=-7/8
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询