关于线性代数问题,希望各位帮帮忙
设二次型f(x1,x2,x3)=x1*x1+2*x2*x2+x3*x3+2*t*x1x2+2*x1*x3的矩阵是奇异矩阵。1)求二次型矩阵A和t的值;2)根据t的值,求一...
设二次型f(x1,x2,x3)=x1*x1+2*x2*x2+x3*x3+2*t*x1x2+2*x1*x3的矩阵是奇异矩阵。 1)求二次型矩阵A和t的值;2)根据t的值,求一个可逆矩阵P和一个对角矩阵Λ,使得P-1 A P= Λ ;3)求A^n 。(n>=2) 【P-1 表示P的逆矩阵】
展开
2个回答
展开全部
解: (1) 二次型的矩阵 A =
1 t 1
t 2 0
1 0 1
由A奇异知 |A| = 0.
而 |A| = -t^2
所以 t=0
(2) 此时 A=
1 0 1
0 2 0
1 0 1
|A-λE|=-λ(λ-2)^2.
所以A的特征值为 λ1=0,λ2=λ3=2.
对λ1=0, AX=0的基础解系为: a1=(1,0,-1)'
对λ2=λ3=2, (A-2E)X=0的基础解系为: a2=(0,1,0)',a3=(1,0,1)'
令P=(a1,a2,a3), Λ=diag(0,2,2)
则P可逆, 且 P^-1AP = Λ.
(3) A^n = (PΛP^-1)^n = PΛ^nP^-1 = Pdiag(0,2^n,2^n)P^-1 =
2^(n-1) 0 2^(n-1)
0 2^t 0
2^(n-1) 0 2^(n-1)
哈哈 一分都不出你哈
1 t 1
t 2 0
1 0 1
由A奇异知 |A| = 0.
而 |A| = -t^2
所以 t=0
(2) 此时 A=
1 0 1
0 2 0
1 0 1
|A-λE|=-λ(λ-2)^2.
所以A的特征值为 λ1=0,λ2=λ3=2.
对λ1=0, AX=0的基础解系为: a1=(1,0,-1)'
对λ2=λ3=2, (A-2E)X=0的基础解系为: a2=(0,1,0)',a3=(1,0,1)'
令P=(a1,a2,a3), Λ=diag(0,2,2)
则P可逆, 且 P^-1AP = Λ.
(3) A^n = (PΛP^-1)^n = PΛ^nP^-1 = Pdiag(0,2^n,2^n)P^-1 =
2^(n-1) 0 2^(n-1)
0 2^t 0
2^(n-1) 0 2^(n-1)
哈哈 一分都不出你哈
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询