已知fx=cos(2x-π/3)+2sin(x-π/4)xsin(x+π/4) 1求fx的最小正周期及单调递增区间;
展开全部
f(x)=cos(2x-π/3)+2sin(x-π/4)cos(x-π/4)
=cos(2x-π/3)+sin(2x-π/2)
=cos(2x-π/3)-cos2x
=2sin(π/6)sin(2x-π/6)
=sin(2x-π/6)
1. 最小正周期T=2π/2=π
单增区间2x-π/6∈[2kπ-π/2, 2kπ+π/2]
x∈[kπ-π/6, kπ+π/3]
2. x∈[-π/12,π/2]
2x-π/6∈[-π/3,5π/6]
sin(2x-π/6)∈[-√3/2, 1]
∴值域为f(x)∈[-√3/2,1]
希望能帮到你,祝学习进步O(∩_∩)O
=cos(2x-π/3)+sin(2x-π/2)
=cos(2x-π/3)-cos2x
=2sin(π/6)sin(2x-π/6)
=sin(2x-π/6)
1. 最小正周期T=2π/2=π
单增区间2x-π/6∈[2kπ-π/2, 2kπ+π/2]
x∈[kπ-π/6, kπ+π/3]
2. x∈[-π/12,π/2]
2x-π/6∈[-π/3,5π/6]
sin(2x-π/6)∈[-√3/2, 1]
∴值域为f(x)∈[-√3/2,1]
希望能帮到你,祝学习进步O(∩_∩)O
展开全部
sin(x+π/4)=sin[(x-π/4)+π/2]=cos(x-π/4)
∴f(x)=cos(2x-π/3)+2sin(x-π/4)cos(x-π/4)
=cos(2x-π/3)+sin(2x-π/2)
=cos(2x-π/3)-cos2x
=(1/2)cos2x + (√3/2)sin2x-cos2x
= (√3/2)sin2x-(1/2)cos2x
=sin(2x-π/6)
1.
T=2π/2=1
-π/2+2kπ≤2x-π/6≤π/2+2kπ
∴-π/6+kπ≤x≤π/3+kπ
∴单调递增区间为[-π/6+kπ,π/3+kπ]
2.
x∈[-π/12,π/2]
2x∈[-π/6,π]
2x-π/6∈[-π/3,5π/6]
∴f(x)∈[-√3/2,1]
即:值域为[-√3/2,1]
∴f(x)=cos(2x-π/3)+2sin(x-π/4)cos(x-π/4)
=cos(2x-π/3)+sin(2x-π/2)
=cos(2x-π/3)-cos2x
=(1/2)cos2x + (√3/2)sin2x-cos2x
= (√3/2)sin2x-(1/2)cos2x
=sin(2x-π/6)
1.
T=2π/2=1
-π/2+2kπ≤2x-π/6≤π/2+2kπ
∴-π/6+kπ≤x≤π/3+kπ
∴单调递增区间为[-π/6+kπ,π/3+kπ]
2.
x∈[-π/12,π/2]
2x∈[-π/6,π]
2x-π/6∈[-π/3,5π/6]
∴f(x)∈[-√3/2,1]
即:值域为[-√3/2,1]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询