已知向量a=(-2cosθ,cosx),b=(2sinθ,-sinx),c=(1/2,-1)(1)若a*c=1/3,b*c=1/4(1)求cos(θ-x)

(2)设θ=π/3,求f(x)=a^2+a*b+根3的最大值及单调递增区间。... (2)设θ=π/3,求f(x)=a^2+a*b+根3的最大值及单调递增区间。 展开
lqbin198
2011-07-14 · TA获得超过5.6万个赞
知道大有可为答主
回答量:9447
采纳率:0%
帮助的人:4905万
展开全部
1. a*c=-cosθ-cosx=1/3
cos²θ+2cosθcosx+cos²x=1/9 (1)
b*c=sinθ+sinx=1/4
sin²θ+2sinθsinx+sin²x=1/16 (2)
(1)+(2) 2+2cos(θ-x)=25/144
所以cos(θ-x)=-263/288
2. f(x)=4*(1/2)²+cos²x-4*(1/2)*(√3/2)-sinxcosx+√3
=1+cos²x-(1/2)sin2x
=(1/2)(cos2x-sin2x)+3/2
=(√2/2)cos(2x+π/4)+3/2
可见f(x)最大值=(√2+3)/2
单调递增区间为2x+π/4∈[2kπ-π/2, 2kπ+π/2]
x∈[kπ-3π/8, kπ+π/8]
希望能帮到你,祝学习进步O(∩_∩)O
SNOWHORSE70121
2011-07-15 · TA获得超过1.8万个赞
知道大有可为答主
回答量:4806
采纳率:100%
帮助的人:2605万
展开全部
1/3=a*c=-cos(θ)-cos(x), 1/9=[cos(θ)]^2+[cos(x)]^2+2cos(θ)cos(x)
1/4=b*c=sin(θ)+sin(x),1/16=[sin(θ)]^2+[sin(x)]^2+2sin(θ)sin(x)
1/9+1/16=2+2[cos(θ)cos(x)+sin(θ)sin(x)]=2+2cos(θ-x)
cos(θ-x)=[1/9+1/16-2]/2=[25/144-2]/2=-263/288

a*a=4[cos(θ)]^2+[cos(x)]^2=1+[cos(x)]^2,
a*b=-2sin(2θ)-sin(2x)/2=-3^(1/2)-sin(2x)/2,
f(x)=[cos(x)]^2+1-3^(1/2)-sin(2x)/2+3^(1/2)
=[cos(2x)+1]/2 + 1 - sin(2x)/2
= [cos(2x)-sin(2x) +3]/2
=[2^(1/2)cos(2x+π/4) + 3]/2
<=[2^(1/2)+3]/2=f(nπ-π/8)
f(x) 的最大值为f(nπ-π/8)=[2^(1/2)+3]/2,
π+2nπ<=2x+π/4<=2π+2nπ时,cos(2x+π/4)单调递增,f(x)单调递增。
此时,
3π/4+2nπ<=2x<=7π/4+2nπ,
3π/8+nπ<=x<=7π/8+nπ.
f(x)的单调递增区间为[3π/8+nπ,7π/8+nπ], n=0, +1,-1, +2,-2,...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式