如图,等腰梯形ABCD中,AB平行CD,AB大于CD,AD等于BC,对角线AC,BD交于点O,∠AOB等于60°,且EF分别
4个回答
展开全部
取OC中点P,OB中点Q,分别连结EP、FQ。
由题意,△AOB和△COD均为等边三角形,那么有:
OC=OD=CD,OA=OB=AB。
而E、F、P、Q分别是OD、OA、OC、OB的中点,有:
PE=1/2CD=1/2OD=OE,PM=1/2OB=1/2OA=OF。
又∠EOF=120度,∠EPM=∠EPO+∠OPM=60度+60度=120度,即∠EOF=∠EPM
所以:△EOF ≌ △EPM。得:EF=EM
同理,可证:△EOF ≌ △MQA。得EF=MA
综上有:EF=EM=MA。故:三角形EFM是等边三角形。
由题意,△AOB和△COD均为等边三角形,那么有:
OC=OD=CD,OA=OB=AB。
而E、F、P、Q分别是OD、OA、OC、OB的中点,有:
PE=1/2CD=1/2OD=OE,PM=1/2OB=1/2OA=OF。
又∠EOF=120度,∠EPM=∠EPO+∠OPM=60度+60度=120度,即∠EOF=∠EPM
所以:△EOF ≌ △EPM。得:EF=EM
同理,可证:△EOF ≌ △MQA。得EF=MA
综上有:EF=EM=MA。故:三角形EFM是等边三角形。
展开全部
取OC中点P,OB中点Q,分别连结EP、FQ。
由题意,△AOB和△COD均为等边三角形,那么有:
OC=OD=CD,OA=OB=AB。
而E、F、P、Q分别是OD、OA、OC、OB的中点,有:
PE=1/2CD=1/2OD=OE,PM=1/2OB=1/2OA=OF。
又∠EOF=120度,∠EPM=∠EPO ∠OPM=60度 60度=120度,即∠EOF=∠EPM
所以:△EOF ≌ △EPM。得:EF=EM
同理,可证:△EOF ≌ △MQA。得EF=MA
综上有:EF=EM=MA。故:三角形EFM是等边三角形。
由题意,△AOB和△COD均为等边三角形,那么有:
OC=OD=CD,OA=OB=AB。
而E、F、P、Q分别是OD、OA、OC、OB的中点,有:
PE=1/2CD=1/2OD=OE,PM=1/2OB=1/2OA=OF。
又∠EOF=120度,∠EPM=∠EPO ∠OPM=60度 60度=120度,即∠EOF=∠EPM
所以:△EOF ≌ △EPM。得:EF=EM
同理,可证:△EOF ≌ △MQA。得EF=MA
综上有:EF=EM=MA。故:三角形EFM是等边三角形。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
取OC中点P,OB中点Q,分别连结EP、FQ。
由题意,△AOB和△COD均为等边三角形,那么有:
OC=OD=CD,OA=OB=AB。
而E、F、P、Q分别是OD、OA、OC、OB的中点,有:
PE=1/2CD=1/2OD=OE,PM=1/2OB=1/2OA=OF。
又∠EOF=120度,∠EPM=∠EPO ∠OPM=60度 60度=120度,即∠EOF=∠EPM
所以:△EOF ≌ △EPM。得:EF=EM
同理,可证:△EOF ≌ △MQA。得EF=MA
综上有:EF=EM=MA。故:三角形EFM是等边三角形。
由题意,△AOB和△COD均为等边三角形,那么有:
OC=OD=CD,OA=OB=AB。
而E、F、P、Q分别是OD、OA、OC、OB的中点,有:
PE=1/2CD=1/2OD=OE,PM=1/2OB=1/2OA=OF。
又∠EOF=120度,∠EPM=∠EPO ∠OPM=60度 60度=120度,即∠EOF=∠EPM
所以:△EOF ≌ △EPM。得:EF=EM
同理,可证:△EOF ≌ △MQA。得EF=MA
综上有:EF=EM=MA。故:三角形EFM是等边三角形。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询