一道高中数学题(见问题补充)
如图,已知角A=60°,P、Q分别是角A的两边上的动点,设AP=X、AQ=Y。设角MAP=α,角MAQ=β(α、β为定值),M在线段PQ上,且AM=2分之根号3,求x+y...
如图,已知角A=60°,P、Q分别是角A的两边上的动点,设AP=X、AQ=Y。设角MAP=α,角MAQ=β(α、β为定值),M在线段PQ上,且AM=2分之根号3,求x+y的最小值,并求取得最小值时x、y的值
展开
3个回答
展开全部
S大三角形面积=S三角形PAM+S三角形MAQ 所以0.5XYsin60°=0.5乘以X乘以(2分之根号3)乘以sina+0.5乘以Y乘以(2分之根号3)乘以sinB 化简得XY=Xsina+Ysinb ,两边同除XY 再用均值不等式。得当X=Y=sina+sinb时,X+Y取得最小值=2(sina+sinb) 不好意思,有点瑕疵。
追问
思路有了,为什么算出来的答案跟你不一样。化简得XY=Xsina+Ysinb,两边同除XY,得1=sina/y+sinb/x,我用基本不等式(1的妙用)继续做,x+y的最小值是(√sina+√sinb)²,还有什么叫均值不等式
追答
恭喜你,你的回答正确。要用柯西不等式(后面介绍)。我的解答从“再用均值不等式”起有误。正解:因为1=(sina÷Y+sinb÷X) 再用柯西不等式
(sina÷Y+sinb÷X)×(X+Y)大于等于(√sina+√sinb)² 而(sina÷Y+sinb÷X)=1 所以
X+Y最小值为(√sina+√sinb)² 当且仅当X=√sinb,Y=√sina 时取等。 注柯西不等式(X÷A+Y÷B)×(A+B)大于等于(√X+√Y)²
证明注柯西不等式将前面展开再用均值不等式。均值不等式挺简单,是最基本内容。√{(a²+b²)÷2}大于等于
(a+b)÷2大于等于√ab大于等于2÷(1÷a+1÷b) 均值不等式与柯西不等式在高中数学运用非常广泛。祝你学习进步!
展开全部
设角APM=r,则∠AQM=120-r
在三角形APM中 用正弦定理 用r表示x 同理表示y
从头到尾不用理会α,β ,因为他们是定值
x+y 只有r为变量 剩下的自己去解
在三角形APM中 用正弦定理 用r表示x 同理表示y
从头到尾不用理会α,β ,因为他们是定值
x+y 只有r为变量 剩下的自己去解
追问
没解出来
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
我就把思路给你吧 电脑上实在不知道怎么写过程啊
60°-α=β,你就把β用α表示 再根据关于角的定理(具体是什么我忘了,我大2了),用α和哪个AM表示X、Y,就好啦
60°-α=β,你就把β用α表示 再根据关于角的定理(具体是什么我忘了,我大2了),用α和哪个AM表示X、Y,就好啦
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询