等腰梯形ABCD中,AD∥BC,AB=DC=AD=4,∠C=60°,P是梯形对称轴MN上一动点,求PC+PD的最小值.

跪求答案、谁能帮我... 跪求答案、谁能帮我 展开
幽娴艾
2011-07-28 · TA获得超过4.4万个赞
知道大有可为答主
回答量:2302
采纳率:100%
帮助的人:1594万
展开全部
AB=CD,梯形是等腰梯形
因为MN是等腰梯形对称轴,所以C点的对称点是B
P在对称轴上,到B、C距离相等
PC+PD最小,就是PB+PD最小,所以连接BD和MN的交点就是P的位置,BD长就是所求长度
AB=AD∴∠ABD=∠ADB;AD‖BC,∠ADB=∠DBC
∴∠ABD=∠DBC,∠ABD+∠DBC=60,∴∠DBC=30
∠BDC=180-∠DBC-∠C=90
因此△DBC是有30度角的直角三角形,BD=√3CD=4√3
所以PC+PD最小值为4√3

参考资料: 只有数据不一样~http://zhidao.baidu.com/question/196607846.html

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式