已知数列{an}的首相a1=2/3,a(n+1)=2an/(an+1),n=1,2……
2个回答
展开全部
1)证明:a(n+1)=2an/(an + 1)
1/a(n+1)=1/2+(1/2)*(1/an)
1/a(n+1)-1=(1/2)*(1/an-1)
1/an -1=a1*(1/2)^(n-1)=(3/2-1)*(1/2)^(n-1)=(1/2)*(1/2)^(n-1)
即数列{1/an - 1}是梁袭乱q=1/2的等比数列
2)解:令bn=n/an=n[1+(2/橡档3)*(1/2)^(n-1)]
Sn=(i=1~n)Σbi= (i=1~n)Σi + (i=1~n)Σ(1/2)*i* (1/2)^(i-1)
令f(x)= (i=1~n)Σ x^i = x*(x^n-1)/(x-1)=[x^(n+1)-x]/(x-1)
f'(x)= (i=1~n)Σ i*x^(i-1) = [nx^(n+1)-(n+1)x^n+1]/(x-1)^2
Sn=n(n+1)/2 + (1/2)*[n(1/2)^(n+1) - (n+1)(1/2)^n + 1]/(1/2-1)^2
=(禅衡n^2+n+4)/2-(n+2)/2^n
1/a(n+1)=1/2+(1/2)*(1/an)
1/a(n+1)-1=(1/2)*(1/an-1)
1/an -1=a1*(1/2)^(n-1)=(3/2-1)*(1/2)^(n-1)=(1/2)*(1/2)^(n-1)
即数列{1/an - 1}是梁袭乱q=1/2的等比数列
2)解:令bn=n/an=n[1+(2/橡档3)*(1/2)^(n-1)]
Sn=(i=1~n)Σbi= (i=1~n)Σi + (i=1~n)Σ(1/2)*i* (1/2)^(i-1)
令f(x)= (i=1~n)Σ x^i = x*(x^n-1)/(x-1)=[x^(n+1)-x]/(x-1)
f'(x)= (i=1~n)Σ i*x^(i-1) = [nx^(n+1)-(n+1)x^n+1]/(x-1)^2
Sn=n(n+1)/2 + (1/2)*[n(1/2)^(n+1) - (n+1)(1/2)^n + 1]/(1/2-1)^2
=(禅衡n^2+n+4)/2-(n+2)/2^n
2011-08-02
展开全部
1/a(n+1)=1/2+1/2*1/an 1/a(n+1)-1=1/2*[1/an-1]
bn=1/皮茄唤an -1为等比数列 q=1/2 b1=1/2 bn=(1/2)^n an=1/[1+1/2^n]
nan=n(1+1/2^n)=n+n*(1/2)^n
Sn=n(n+1)/2+[1*(1/2)+2*(1/2)²+3*(1/2)³+....+n*(1/2)^n]
Tn=1*(1/2)+2*(1/2)²+3*(1/2)³+....+n*(1/2)^n
1/2*Tn=(1/2)²+2*(1/2)³+....+(n-1)*(1/2)^n +n*(1/2)^(n+1)
1/2Tn=1/2+1/2²+1/2³+...+1/2^n-n*(1/2)^(n+1)=[1/纳腊2-(1/2)^(n+1)]/(1-1/2)-n*(1/2)^(n+1)
Tn=1-(1+n/燃凯2)*(1/2)^n
bn=1/皮茄唤an -1为等比数列 q=1/2 b1=1/2 bn=(1/2)^n an=1/[1+1/2^n]
nan=n(1+1/2^n)=n+n*(1/2)^n
Sn=n(n+1)/2+[1*(1/2)+2*(1/2)²+3*(1/2)³+....+n*(1/2)^n]
Tn=1*(1/2)+2*(1/2)²+3*(1/2)³+....+n*(1/2)^n
1/2*Tn=(1/2)²+2*(1/2)³+....+(n-1)*(1/2)^n +n*(1/2)^(n+1)
1/2Tn=1/2+1/2²+1/2³+...+1/2^n-n*(1/2)^(n+1)=[1/纳腊2-(1/2)^(n+1)]/(1-1/2)-n*(1/2)^(n+1)
Tn=1-(1+n/燃凯2)*(1/2)^n
追问
第二问有问题,答案给的是Sn=(n^2+n+4)/2-(n+2)/2^n
追答
1/2Tn=1/2+1/2²+1/2³+...+1/2^n-n*(1/2)^(n+1)=[1/2-(1/2)^(n+1)]/(1-1/2)-n*(1/2)^(n+1)
=1-2^n-n*(1/2)^(n+1)
Tn=2-2*1/2^n-n*2^n=2-(n+2)*1/2^n
Sn=Tn+n(n+1)/2=(n^2+n+4)/2-(n+2)/2^n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询