如图,已知AB为⊙O的直径,E是AB延长线上一点,点C是⊙O上的一点,连结EC、BC、AC,且∠BCE=∠BAC.(1)

如图,已知AB为⊙O的直径,E是AB延长线上一点,点C是⊙O上的一点,连结EC、BC、AC,且∠BCE=∠BAC.(1)求证:EC是⊙O的切线.(2)过点A作AD垂直于直... 如图,已知AB为⊙O的直径,E是AB延长线上一点,点C是⊙O上的一点,连结EC、BC、AC,且∠BCE=∠BAC.(1)求证:EC是⊙O的切线.(2)过点A作AD垂直于直线EC于D,若AD=3,DE=4,求⊙O的半径. 展开
 我来答
老子白于樽8178
推荐于2016-12-01 · 超过67用户采纳过TA的回答
知道答主
回答量:123
采纳率:0%
帮助的人:131万
展开全部
(1)证明见解析;(2) .


试题分析:(1)连结OC,根据圆周角定理由AB是⊙O的直径得∠1+∠2=90°,而∠1=∠A,∠A=∠BCE,所以∠BCE=∠1,即∠BCE+∠2=90°,然后根据切线的判定定理即可得到EC是⊙O的切线.
(2)设⊙O的半径为r,在Rt△ADE中利用勾股定理计算出AE=5,则OE=5-r,OC=r,咋证明△EOC∽△EAD,利用相似比得到  ,即 ,然后解方程即可得到圆的半径.
(1)如图,连接OC,
∵AB是⊙O的直径,∴∠ACB=90°,即∠1+∠2=90°.
∵OC=OA,∴∠1=∠A.
又∵∠A=∠BCE,∴∠BCE=∠1.
∴∠BCE+∠2=90°,即OC⊥EC.
又EC过半径OC的外端,∴EC是⊙O的切线.

(2)由(1)可知OC⊥EC,
又AD⊥EC,∴OC∥AD. ∴△EOC∽△EAD. ∴ .
设⊙O的半径为r,
在Rt△ADE中AD=3,ED=4,则AE=5,
∴OE=5-r;OC=r.
.
, 即⊙O的半径为 .
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式