已知数列an中,a1=1,且点P(an,an+1),在直线X-Y+1=0上,
设b(n)=1/a(n),Sn表示数列{bn}的前n项和,试问:是否存在关于n的整式g(n),使得S1+S2+S3+…+Sn-1=[(Sn)-1]*g(n)对于一切不小于...
设b(n)=1/a(n),Sn表示数列{bn}的前n项和,试问:是否存在关于n的整式g(n),使得S1+S2+S3+…+Sn-1=[(Sn)-1]*g(n)对于一切不小于2的自然数n恒成立?若存在,写出g(n)的解析式,并加以证明;若不存在,说明理由。
解:bn=1/an=1/n;
sn=1+1/2+1/3+…+1/n,
S1+S2+S3+…+Sn-1=1+(1+1/2)+(1+1/2+1/3)+…+(1+1/2+1/3+…+1/(n-1))
=(n-1)+(n-2)/2+(n-3)/3+…+1/(n-1)
=(n/1-1)+(n/2-1)+(n/3-1)+…+(n/(n-1)-1)
=n(1/1+1/2+1/3+…+1/(n-1))-(n-1)
???=n[1/2+1/3+1/4+…+1/(n-1)+1/n]+n-1-(n-1)
=n[1/2+1/3+1/4+…+1/(n-1)+1/n]
=n[(sn)-1]=g(n);
所以,g(n)=n,解析式存在
我不懂的是后面为什么是+n-1,不应该是+n+1吗?但这样的话,约分就约不掉了 展开
解:bn=1/an=1/n;
sn=1+1/2+1/3+…+1/n,
S1+S2+S3+…+Sn-1=1+(1+1/2)+(1+1/2+1/3)+…+(1+1/2+1/3+…+1/(n-1))
=(n-1)+(n-2)/2+(n-3)/3+…+1/(n-1)
=(n/1-1)+(n/2-1)+(n/3-1)+…+(n/(n-1)-1)
=n(1/1+1/2+1/3+…+1/(n-1))-(n-1)
???=n[1/2+1/3+1/4+…+1/(n-1)+1/n]+n-1-(n-1)
=n[1/2+1/3+1/4+…+1/(n-1)+1/n]
=n[(sn)-1]=g(n);
所以,g(n)=n,解析式存在
我不懂的是后面为什么是+n-1,不应该是+n+1吗?但这样的话,约分就约不掉了 展开
2个回答
2011-08-12
展开全部
设b(n)=1/a(n),Sn表示数列{bn}的前n项和,试问:是否存在关于n的整式g(n),使得S1+S2+S3+…+Sn-1=[(Sn)-1]*g(n)对于一切不小于2的自然数n恒成立?若存在,写出g(n)的解析式,并加以证明;若不存在,说明理由。
解:bn=1/an=1/n;
sn=1+1/2+1/3+…+1/n,
S1+S2+S3+…+Sn-1=1+(1+1/2)+(1+1/2+1/3)+…+(1+1/2+1/3+…+1/(n-1))
=(n-1)+(n-2)/2+(n-3)/3+…+1/(n-1)
=(n/1-1)+(n/2-1)+(n/3-1)+…+(n/(n-1)-1)
=n(1/1+1/2+1/3+…+1/(n-1))-(n-1)
???=n[1/2+1/3+1/4+…+1/(n-1)+1/n]+n-1-(n-1)
=n[1/2+1/3+1/4+…+1/(n-1)+1/n]
=n[(sn)-1]=g(n);
解:bn=1/an=1/n;
sn=1+1/2+1/3+…+1/n,
S1+S2+S3+…+Sn-1=1+(1+1/2)+(1+1/2+1/3)+…+(1+1/2+1/3+…+1/(n-1))
=(n-1)+(n-2)/2+(n-3)/3+…+1/(n-1)
=(n/1-1)+(n/2-1)+(n/3-1)+…+(n/(n-1)-1)
=n(1/1+1/2+1/3+…+1/(n-1))-(n-1)
???=n[1/2+1/3+1/4+…+1/(n-1)+1/n]+n-1-(n-1)
=n[1/2+1/3+1/4+…+1/(n-1)+1/n]
=n[(sn)-1]=g(n);
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询