5个回答
展开全部
公式是:nx(n+1)/2
令Pn=1+2+3+...+(n-2)+(n-1)+n
Qn=n+(n-1)+(n-2)+...+3+2+1
那么
Pn+Qn=(1+n)+(2+(n-1))+(3+(n-2))+...+((n-2)+3)+((n-1)+2)+(n+1)
=(n+1)+(n+1)+(n+1)+...+(n+1)+(n+1)+(n+1)
=nx(n+1)
又Pn=Qn
那么得2Pn=n*(n+1)
所以:Pn=1+2+3+...+(n-2)+(n-1)+n=nx(n+1)/2
扩展资料:
在等差数列中,S = a,S = b (n>m),则S = (a-b)。记等差数列的前n项和为S。若a >0,公差d<0,则当a ≥0且an +1≤0时,S 最大;若a <0 ,公差d>0,则当a ≤0且an +1≥0时,S 最小。
若等差数列Sp=q,Sq=p,则Sp+q=-p-q,并且有ap=q,aq=p则ap+q=0。
展开全部
解法一:(裂项相消)
因
n(n+1) = 1/3[n(n+1)(n+2) -(n-1)n(n+1)]
所以
1*2+2*3+3*4......+N*(N+1) = 1/3(1*2*3 - 0) + 1/3(2*3*4 - 1*2*3)+1/3(3*4*5 - 2*3*4) +....+ 1/3[n(n+1)(n+2) -(n-1)n(n+1)]
= 1/3[(1*2*3 - 0)+(2*3*4 - 1*2*3)+(3*4*5 - 2*3*4)+....+[n(n+1)(n+2) -(n-1)n(n+1)]]
= 1/3n(n+1)(n+2)
解法二:(分别求和)
因 n(n+1) = n^2 + n
则
1*2+2*3+3*4......+N*(N+1)
= (1^2 + 2^2 +3^3+....+n^2) +(1+2+3+...+n)
= 1/6n(n+1)(2n+1) + 1/2n(n+1)
= 1/3n(n+1)(n+2)
因
n(n+1) = 1/3[n(n+1)(n+2) -(n-1)n(n+1)]
所以
1*2+2*3+3*4......+N*(N+1) = 1/3(1*2*3 - 0) + 1/3(2*3*4 - 1*2*3)+1/3(3*4*5 - 2*3*4) +....+ 1/3[n(n+1)(n+2) -(n-1)n(n+1)]
= 1/3[(1*2*3 - 0)+(2*3*4 - 1*2*3)+(3*4*5 - 2*3*4)+....+[n(n+1)(n+2) -(n-1)n(n+1)]]
= 1/3n(n+1)(n+2)
解法二:(分别求和)
因 n(n+1) = n^2 + n
则
1*2+2*3+3*4......+N*(N+1)
= (1^2 + 2^2 +3^3+....+n^2) +(1+2+3+...+n)
= 1/6n(n+1)(2n+1) + 1/2n(n+1)
= 1/3n(n+1)(n+2)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
Sn=1*2+2*3+3*4......+n(n+1)
=1/3*1*2*3+1/3(2*3*4-1*2*3)+1/3(3*4*5-2*3*4)+...+1/3[n(n+1)(n+2)-(n-1)n(n+1)]
=1/3[1*2*3+2*3*4-1*2*3+3*4*5-2*3*4+...+n(n+1)(n+2)-(n-1)n(n+1)]
=1/3n(n+1)(n+2)
=1/3*1*2*3+1/3(2*3*4-1*2*3)+1/3(3*4*5-2*3*4)+...+1/3[n(n+1)(n+2)-(n-1)n(n+1)]
=1/3[1*2*3+2*3*4-1*2*3+3*4*5-2*3*4+...+n(n+1)(n+2)-(n-1)n(n+1)]
=1/3n(n+1)(n+2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
N×(N+1)
=
N^2
+
N
对于
N^2用平方求和公式
对于N就是N(N+1)/2
最后把两个加在一起就可以了
=
N^2
+
N
对于
N^2用平方求和公式
对于N就是N(N+1)/2
最后把两个加在一起就可以了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
没看懂提示为什么这样要求
不乘3也能做
不过你要求,我们可以这样:
首先把n(n+1)拆成n^2+n,然后每一项都以此类推,左边变成(1^2+1)+(2^2+2)+(3^2+3)……(n^2+n)
然后把平方项放在一起相加,普通数字放在一起相加,得到:
(1^2
+
2^2
+
3^2
+
4^2
+
……
+
n^2)+(1+2+3+4+……+n)
左边的括号内是一个特例求和公式,等于n(n+1)(2n+1)/6,可用数学归纳法证明,也可用立方和公式推导,右边括号内是等差数列,不用说了吧,
你不是要乘以3吗,就在每个括号前乘以3好了,然后分别计算,再分别乘以3,最后相加得
n(n+1)(n+2),原式即可证明
另外你可以用数学归纳法证明
复制的资料:2³=(1+1)³=1+3+3+1
3³=(1+2)³=1+3×2²+3×2+2³
...
(1+n)³=1+3×n²+3×n+n³
两边相加
2³+3³+...+n³+(1+n)³=n+3(1+2²+...+n²)+3(1+2+...+n)+1+2³+3³+...+n³
整理得:
s=n(n+1)*(2n+1)/6
不乘3也能做
不过你要求,我们可以这样:
首先把n(n+1)拆成n^2+n,然后每一项都以此类推,左边变成(1^2+1)+(2^2+2)+(3^2+3)……(n^2+n)
然后把平方项放在一起相加,普通数字放在一起相加,得到:
(1^2
+
2^2
+
3^2
+
4^2
+
……
+
n^2)+(1+2+3+4+……+n)
左边的括号内是一个特例求和公式,等于n(n+1)(2n+1)/6,可用数学归纳法证明,也可用立方和公式推导,右边括号内是等差数列,不用说了吧,
你不是要乘以3吗,就在每个括号前乘以3好了,然后分别计算,再分别乘以3,最后相加得
n(n+1)(n+2),原式即可证明
另外你可以用数学归纳法证明
复制的资料:2³=(1+1)³=1+3+3+1
3³=(1+2)³=1+3×2²+3×2+2³
...
(1+n)³=1+3×n²+3×n+n³
两边相加
2³+3³+...+n³+(1+n)³=n+3(1+2²+...+n²)+3(1+2+...+n)+1+2³+3³+...+n³
整理得:
s=n(n+1)*(2n+1)/6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询