已知a、b、c∈R,且a+b+c=1求证:.a∧2+b∧2+c∧2≥1/3
3个回答
展开全部
a²+b²≥2ab
b²+c²≥2bc
a²+c²≥2ac
全加,得
2(a²+b²+c²)≥2(ab+bc+ac)
所以:
(a+b+c)²=1
=a²+b²+c²+2(ab+bc+ac)
≤a²+b²+c²+2(a²+b²+c²)
=3(a²+b²+c²)
∴a²+b²+c²≥1/3
当且仅当a=b=c=1/3时,等号成立。
b²+c²≥2bc
a²+c²≥2ac
全加,得
2(a²+b²+c²)≥2(ab+bc+ac)
所以:
(a+b+c)²=1
=a²+b²+c²+2(ab+bc+ac)
≤a²+b²+c²+2(a²+b²+c²)
=3(a²+b²+c²)
∴a²+b²+c²≥1/3
当且仅当a=b=c=1/3时,等号成立。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(a*a+b*b+c*c)(1+1+1)>=(a+b+c)*(a+b+c);
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询