
展开全部
不知道图怎么化 但是给你个思路你很快就做出来了
过D点作DM⊥AB DN⊥AC
因为AD是平分线 所以DM=DN
再利用四边形的内角和-两个直角=180我们可以知道∠EAF+∠MDN=180°
从而得出∠MDN =∠FDN
再证明RT△EMD≌RT△FND即可
过D点作DM⊥AB DN⊥AC
因为AD是平分线 所以DM=DN
再利用四边形的内角和-两个直角=180我们可以知道∠EAF+∠MDN=180°
从而得出∠MDN =∠FDN
再证明RT△EMD≌RT△FND即可
追问
从哪里得出∠MDN =∠FDN,写详细点好吗,给你20分
追答
∠EAF+∠MDN=180°
∠EAF+∠EDF=180°
∴∠MDN=∠EDF
注意这两个中间是有一个公共角
展开全部
过D点作DM⊥AB DN⊥AC
因为AD是平分线
所以∠1=∠2 (角平分线性质)
因为DM⊥AB,DN⊥AC (已知)
所以DM=DN (角平分线上的点到角两边的距离相等)
因为360°-∠3-∠4=180° (四边形内角和)
∠EAF+∠EDF=180° (已知)
所以∠MDN+∠EAF=180° (等式性质)
所以∠MDN=∠FDN (等式性质)
因为DM⊥AB,DN⊥AC (已知)
所以∠EMD=∠FND=90° (垂直定义)
在三角形EMD与三角形FND中
因为∠MDN=∠EDF (已证)
DM = DN (已证)
∠EMD=∠FND (已证)
所以三角形EMD全等FND (AAS)
所以DE=DF (全等三角形对应边相等)
专注解题30年,您最真挚的赞同是我前进的动力!
因为AD是平分线
所以∠1=∠2 (角平分线性质)
因为DM⊥AB,DN⊥AC (已知)
所以DM=DN (角平分线上的点到角两边的距离相等)
因为360°-∠3-∠4=180° (四边形内角和)
∠EAF+∠EDF=180° (已知)
所以∠MDN+∠EAF=180° (等式性质)
所以∠MDN=∠FDN (等式性质)
因为DM⊥AB,DN⊥AC (已知)
所以∠EMD=∠FND=90° (垂直定义)
在三角形EMD与三角形FND中
因为∠MDN=∠EDF (已证)
DM = DN (已证)
∠EMD=∠FND (已证)
所以三角形EMD全等FND (AAS)
所以DE=DF (全等三角形对应边相等)
专注解题30年,您最真挚的赞同是我前进的动力!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询