某同学在研究函数f(x)=x1+|x|(x∈R)时,给出了下面几个结论:①函数f...

某同学在研究函数f(x)=x1+|x|(x∈R)时,给出了下面几个结论:①函数f(x)的值域为(-1,1);②若f(x1)=f(x2),则恒有x1=x2;③f(x)在(-... 某同学在研究函数f(x)=x1+|x|(x∈R)时,给出了下面几个结论: ①函数f(x)的值域为(-1,1);②若f(x1)=f(x2),则恒有x1=x2;③f(x)在(-∞,0)上是减函数; ④若规定f1(x)=f(x),fn+1(x)=f[fn(x)],则fn(x)=x1+n|x|对任意n∈N*恒成立, 上述结论中所有正确的结论是(  )A.②③B.②④C.①③D.①②④ 展开
 我来答
鄞晟赵妙芙
2020-07-16 · TA获得超过3963个赞
知道大有可为答主
回答量:3222
采纳率:27%
帮助的人:442万
展开全部
解:①|x|<1+|x|,故
x
1+|x|
∈(-1,1),函数f(x)的值域为(-1,1),①正确;
②函数f(x)=
x
1+|x|
是一个奇函数,当x≥0时,f(x)=
x
1+x
=1-
1
1+x
,判断知函数在(0,+∞)上是一个增函数,由奇函数的性质知,函数f(x)=
x
1+|x|
(x∈R)是一个增函数,故若x1≠x2,则一定有f(x1)≠f(x2),
从而有若f(x1)=f(x2),则恒有x1=x2;
此命题正确;
③由②已证f(x)在(-∞,0)上是增函数,故此命题不正确;
④当n=1,f1(x)=f(x)=
x
1+|x|
,f2(x)=
x
1+|x|
1+
|x|
1+|x|
=
x
1+2|x|

假设n=k时,fk(x)=
x
1+k|x|
成立,则n=k+1时,fk+1(x)=
x
1+k|x|
1+
|x|
1+k|x|
=
x
1+(k+1)|x|
成立,
由数学归纳法知,此命题正确.
故选D.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式