m为何值时,关于x方程8x^2-(m-1)x+(m-7)=0的两根在区间(0,2)

 我来答
北慕1718
2022-07-20 · TA获得超过857个赞
知道小有建树答主
回答量:135
采纳率:0%
帮助的人:50.1万
展开全部
令f(x)=8x^2-(m-1)x+(m-7).这是一条开口向上的抛物线,
要使方程8x^2-(m-1)x+(m-7)=0的两根在区间(0,2)内,就需要同时满足:
f(0)>0、f(2)>0、[-(m-1)]^2-4×8(m-7)>0.
一、由f(0)>0,得:m-7>0,∴m>7.
二、由f(2)>0,得:8×4-2(m-1)+(m-7)>0,
  ∴32-2m+2+m-7>0,∴m<27.
三、由[-(m-1)]^2-4×8(m-7)>0,得:m^2-2m+1-32m+32×7>0,
  m^2-34m+225>0,∴(m-9)(m-25)>0,∴m>25,或m<9.
综上所述,得:7<m<9,或25<m<27.
∴当m∈(7,9)∪(25,27)时,方程的两根在区间(0,2)内.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式