已知函数f(x)=cos^2wx+根号3sinwxcoswx(w>0)的最小正周期为pai
展开全部
f(x)=cos^2wx+√3sinwxcoswx
=(1/2)[1+cos2wx+√3sin2wx)
=1/2+sin(2wx+π/6)(w>0)的最小正周期为π,
∴w=1,f(x)=1/2+sin(2x+π/6).
1.f(2π/3)=1/2+sin(3π/2)=1/2-1=-1/2.
2.f(x)的增区间由(2k-1/2)π<2x+π/6<(2k+1/2)π,k∈Z确定,
各减π/6,(2k-2/3)π<2x<(2k+1/3)π,
各除以2,(k-1/3)π<x<(k+1/6)π.
图像的对称轴方程为2x+π/6=(k+1/2)π,
化简得x=(k+1/3)π/2.
=(1/2)[1+cos2wx+√3sin2wx)
=1/2+sin(2wx+π/6)(w>0)的最小正周期为π,
∴w=1,f(x)=1/2+sin(2x+π/6).
1.f(2π/3)=1/2+sin(3π/2)=1/2-1=-1/2.
2.f(x)的增区间由(2k-1/2)π<2x+π/6<(2k+1/2)π,k∈Z确定,
各减π/6,(2k-2/3)π<2x<(2k+1/3)π,
各除以2,(k-1/3)π<x<(k+1/6)π.
图像的对称轴方程为2x+π/6=(k+1/2)π,
化简得x=(k+1/3)π/2.
展开全部
f(x)=cos^2wx+根号3sinwxcoswx
=1/2+(cos2wx)/2+√3/2sin2wx
=1/2+sin(2wx+π/6)
由于f(x)的最小正周期为pai,则w=1
f(x)=1/2+sin(2x+π/6)
f(2/3pai)=1/2-1=-1/2
由-π/2+2kπ<2x+π/6<π/2+2kπ可得-π/3+kπ<x<π/6+kπ,即为函数f(x)的单调递增区间
令2x+π/6=π/2+kπ,解得x=π/6+kπ/2,即为图像的对称轴方程
=1/2+(cos2wx)/2+√3/2sin2wx
=1/2+sin(2wx+π/6)
由于f(x)的最小正周期为pai,则w=1
f(x)=1/2+sin(2x+π/6)
f(2/3pai)=1/2-1=-1/2
由-π/2+2kπ<2x+π/6<π/2+2kπ可得-π/3+kπ<x<π/6+kπ,即为函数f(x)的单调递增区间
令2x+π/6=π/2+kπ,解得x=π/6+kπ/2,即为图像的对称轴方程
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询