有关高二数学数列极限的几道题求解,要有过程
1.已知数列(an)是等比数列,其前n项和为sn,若s3=18s4-a1=-9求limSn2.在等比数列(an)中已知a1+a2+a3=18,a2+a3+a4=-9求li...
1.已知数列(an)是等比数列,其前n项和为sn,若s3=18 s4-a1=-9求limSn
2.在等比数列(an)中已知a1+a2+a3=18,a2+a3+a4=-9求limSn
3.已知数列(an)是公比为正数的等比数列,且满足1/a2+1/a3+1/a4=117,a1a2a3=1/(3的六次方),求lim(a1+a2+。。。。+an) 最后谢谢回答问题的好同志 展开
2.在等比数列(an)中已知a1+a2+a3=18,a2+a3+a4=-9求limSn
3.已知数列(an)是公比为正数的等比数列,且满足1/a2+1/a3+1/a4=117,a1a2a3=1/(3的六次方),求lim(a1+a2+。。。。+an) 最后谢谢回答问题的好同志 展开
4个回答
展开全部
1. 设公比为q
则S3=a1*(1-q³)/(1-q)=18 (1)
S4-a1=a1*(1-q^4)/(1-q)-a1=-9 (2)
(2)/(1) [(1-q^4)/(1-q)-1]/[(1-q³)/(1-q)]=-1/2
2(1-q^4)-2(1-q)=-(1-q³)
通常q≠1 所以解得q=-1
代入(1) a1=18
所以limSn=a1/(1-q)=18/(1+1)=9
2. 设公比为q
则a1+a2+a3=a1*(1-q³)/(1-q)=18 (3)
a2+a3+a4=S4-a1=a1*(1-q^4)/(1-q)-a1=-9 (4)
与1题完全一样,结果同样,计算略。
3. 设公比为q>0
则1/(a1*q)+1/(a1*q²)+1/(a1*q³)=117
1+1/q+1/q²=117*a1*q (5)
又a1*a2*a3=a1*a1*q*a1*q²=(a1*q)³=1/3^6
所以a1*q=1/9 代入(5)
1+1/q+1/q²=117*1/9=13
即12q²-q-1=0
(4q-1)(3q+1)=0
解得q=1/4或q=-1/3(舍去)
所以a1=1/(9q)=4/9
lim(a1+a2+。。。。+an)
=limSn
=a1/(1-q)
=(4/9)/(1-1/4)
=16/27
希望能帮到你O(∩_∩)O
则S3=a1*(1-q³)/(1-q)=18 (1)
S4-a1=a1*(1-q^4)/(1-q)-a1=-9 (2)
(2)/(1) [(1-q^4)/(1-q)-1]/[(1-q³)/(1-q)]=-1/2
2(1-q^4)-2(1-q)=-(1-q³)
通常q≠1 所以解得q=-1
代入(1) a1=18
所以limSn=a1/(1-q)=18/(1+1)=9
2. 设公比为q
则a1+a2+a3=a1*(1-q³)/(1-q)=18 (3)
a2+a3+a4=S4-a1=a1*(1-q^4)/(1-q)-a1=-9 (4)
与1题完全一样,结果同样,计算略。
3. 设公比为q>0
则1/(a1*q)+1/(a1*q²)+1/(a1*q³)=117
1+1/q+1/q²=117*a1*q (5)
又a1*a2*a3=a1*a1*q*a1*q²=(a1*q)³=1/3^6
所以a1*q=1/9 代入(5)
1+1/q+1/q²=117*1/9=13
即12q²-q-1=0
(4q-1)(3q+1)=0
解得q=1/4或q=-1/3(舍去)
所以a1=1/(9q)=4/9
lim(a1+a2+。。。。+an)
=limSn
=a1/(1-q)
=(4/9)/(1-1/4)
=16/27
希望能帮到你O(∩_∩)O
展开全部
1)设等比数列公比为q
S3=a1+a2+a3=18
S4-a1=a2+a3+a4
=a1q+a2q+a3q
=q(a1+a2+a3)=-9
q=-1/2 ,S4-S3=a4=a1xq^3=a1-9-18
得 a1=24
Sn=(q^n-1)/(q-1)xa1 代入可得limSn=16
2)同1一样做
3)a1a2a3=a1x(a1q)x(a2q^2)=a1^3xq^3=1/3^6
a1q=1/9=a2
1/a2+1/a3+1/a4=1/a2+1/a2q+1/a2q^2=117
代入a2解得q=-1/4或1/3 a1=-4/9或1/3
又公比为正 则Sn的极限为1/2
S3=a1+a2+a3=18
S4-a1=a2+a3+a4
=a1q+a2q+a3q
=q(a1+a2+a3)=-9
q=-1/2 ,S4-S3=a4=a1xq^3=a1-9-18
得 a1=24
Sn=(q^n-1)/(q-1)xa1 代入可得limSn=16
2)同1一样做
3)a1a2a3=a1x(a1q)x(a2q^2)=a1^3xq^3=1/3^6
a1q=1/9=a2
1/a2+1/a3+1/a4=1/a2+1/a2q+1/a2q^2=117
代入a2解得q=-1/4或1/3 a1=-4/9或1/3
又公比为正 则Sn的极限为1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
麻烦你把那些数列的公式发过来 我不太确定 不过这几个题貌似不难
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
,极限值 = 最高次项系数之比 ,即 a/4 = 1/b ,∴ab = 4 3. ,∴n = 5 因此数列{lgan}的前5项和最大
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询