设多项式2x^4-x^3+ax^2+3x+b能被x^2-2x+2整除,求a,b的值
1个回答
展开全部
设2x^4-x^3+ax^2+3x+b=(x^2-2x+2)(2x²+mx+b/2)
则2x^4-x^3+ax^2+3x+b=(x^2-2x+2)(2x²+mx+b/2)
2x^4-x^3+ax^2+3x+b=2x^4+mx^3-4x^3+b/2x^2-2mx^2+4x²-bx++2mx+b
2x^4-x^3+ax^2+3x+b=2x^4+(m-4)x^3+(b/2-2m+4)x^2+(2m-b)x+b
{m-4=-1
b/2-2m+4=a
2m-b=3
解得:m=3,b=3,a=-1/2
则2x^4-x^3+ax^2+3x+b=(x^2-2x+2)(2x²+mx+b/2)
2x^4-x^3+ax^2+3x+b=2x^4+mx^3-4x^3+b/2x^2-2mx^2+4x²-bx++2mx+b
2x^4-x^3+ax^2+3x+b=2x^4+(m-4)x^3+(b/2-2m+4)x^2+(2m-b)x+b
{m-4=-1
b/2-2m+4=a
2m-b=3
解得:m=3,b=3,a=-1/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询