
已知数列{an}的前n项和为Sn,满足条件lgSn+(n-1)lgb=lg(b∧n+1+n-2),其中b>0且b≠1,若对4≤n∈N,
2个回答
展开全部
不知道你后面说的是不是lg[b^(n+1)+n-2],如果是
lgs(n+1)+nlgb=lg[b^(n+2)+n-1]
得到sn=[b^(n+2)+n-2]/b^(n-1)
s(n+1)=[b^(n+2)+n-1]/b^n
s(n-1)=[b^n+n-3]/b^(n-2)
得到a(n+1)=s(n+1)-sn=[n-1-(n-2)b]/b^n
an=sn-s(n-1)=[n-2-(n-3)b^(n-1)]
由题目条件可知a(n+1)>an得到
a(n+1)-an>0化简得到n(b-1)^2-(3b-1)(b-1)>0
当b>1时b>1+2/(n-3),当n=4时右边最大 解得b>3
当b<1时解得b<1+2/(n-3),所以b<1
综上所述0<b<1或者b>3~~~
解答完毕
lgs(n+1)+nlgb=lg[b^(n+2)+n-1]
得到sn=[b^(n+2)+n-2]/b^(n-1)
s(n+1)=[b^(n+2)+n-1]/b^n
s(n-1)=[b^n+n-3]/b^(n-2)
得到a(n+1)=s(n+1)-sn=[n-1-(n-2)b]/b^n
an=sn-s(n-1)=[n-2-(n-3)b^(n-1)]
由题目条件可知a(n+1)>an得到
a(n+1)-an>0化简得到n(b-1)^2-(3b-1)(b-1)>0
当b>1时b>1+2/(n-3),当n=4时右边最大 解得b>3
当b<1时解得b<1+2/(n-3),所以b<1
综上所述0<b<1或者b>3~~~
解答完毕
展开全部
lgs(n+1)+nlgb=lg[b^(n+2)+n-1]
得到sn=[b^(n+2)+n-2]/b^(n-1)
s(n+1)=[b^(n+2)+n-1]/b^n
s(n-1)=[b^n+n-3]/b^(n-2)
得到a(n+1)=s(n+1)-sn=[n-1-(n-2)b]/b^n
an=sn-s(n-1)=[n-2-(n-3)b^(n-1)
a(n+1)>an得到
a(n+1)-an>0化简得到n(b-1)^2-(3b-1)(b-1)>0
当b>1时 b>1+2/(n-3),当n=4时右边最大 b>3
当b<1时 b<1+2/(n-3),b<1
综上所述0<b<1或者b>3~~~
得到sn=[b^(n+2)+n-2]/b^(n-1)
s(n+1)=[b^(n+2)+n-1]/b^n
s(n-1)=[b^n+n-3]/b^(n-2)
得到a(n+1)=s(n+1)-sn=[n-1-(n-2)b]/b^n
an=sn-s(n-1)=[n-2-(n-3)b^(n-1)
a(n+1)>an得到
a(n+1)-an>0化简得到n(b-1)^2-(3b-1)(b-1)>0
当b>1时 b>1+2/(n-3),当n=4时右边最大 b>3
当b<1时 b<1+2/(n-3),b<1
综上所述0<b<1或者b>3~~~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询