设三棱锥P-ABC的顶点P在平面ABC上的射影是H,则下列命题正确的是:
1.若PA垂直BC,PB垂直AC,则H是三角形ABC的垂心.2.若PA,PB,PC两两垂直,则H是三角形ABC的垂心.3.若角ABC=90度,H是AC的中点,则PA=PB...
1.若PA垂直BC,PB垂直AC,则H是三角形ABC的垂心.
2.若PA,PB,PC两两垂直,则H是三角形ABC的垂心.
3.若角ABC=90度,H是AC的中点,则PA=PB=PC.
4.若PA=PB=PC,则H是三角形ABC的外心.
过程 展开
2.若PA,PB,PC两两垂直,则H是三角形ABC的垂心.
3.若角ABC=90度,H是AC的中点,则PA=PB=PC.
4.若PA=PB=PC,则H是三角形ABC的外心.
过程 展开
展开全部
123真。证明:1因为PA,PH都垂直于BC,则面PAH垂直于BC,则AH垂直于BC
2易证,PA垂直于平面PBC,则,PA垂直于BC,而PH垂直于BC,则面AHP垂直于线BC,从而AH垂直于BC,后同理可证
3过H做AB平行线,HD,连接PH,因为PH垂直于BC,且等分BC,所以PB=PC,易证,平面PHD垂直于面ABC,则PD垂直于AC,易证,AD=CD,则在三角形PAC中,PD垂直平分AC,则PA=PC。
4连接CH并延长交AB于D,△ABP等腰得出,PD垂直于AB,从而面PDC垂直于AB,则CD垂直于AB,则CD为AB的中垂线。同理证三边,则为垂心,即内心
2易证,PA垂直于平面PBC,则,PA垂直于BC,而PH垂直于BC,则面AHP垂直于线BC,从而AH垂直于BC,后同理可证
3过H做AB平行线,HD,连接PH,因为PH垂直于BC,且等分BC,所以PB=PC,易证,平面PHD垂直于面ABC,则PD垂直于AC,易证,AD=CD,则在三角形PAC中,PD垂直平分AC,则PA=PC。
4连接CH并延长交AB于D,△ABP等腰得出,PD垂直于AB,从而面PDC垂直于AB,则CD垂直于AB,则CD为AB的中垂线。同理证三边,则为垂心,即内心
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询