已知奇函数f(x)的定义域为R 对于任意实数x都有f(x+4)=f(x)又f(1)=4那么f[f(7)]=
1个回答
2011-09-22 · 知道合伙人教育行家
关注
展开全部
f(x+4)=f(x)
f(1)= 4
f(5) = f(1+4)=f(1) = 4
奇函数: f(-1)= -f(1) = -4
f(3) = f(-1+4) = f (-1) = -4
f(7) = f(3+4) = f(3) = -4
f(f(7) ) = f(-4) = - f(4) = - f (0+4)= - f (0)
f(x)为奇函数,并且x属于R时,f(0)=0.
∴f(f(7) ) = - f (0)= 0
f(1)= 4
f(5) = f(1+4)=f(1) = 4
奇函数: f(-1)= -f(1) = -4
f(3) = f(-1+4) = f (-1) = -4
f(7) = f(3+4) = f(3) = -4
f(f(7) ) = f(-4) = - f(4) = - f (0+4)= - f (0)
f(x)为奇函数,并且x属于R时,f(0)=0.
∴f(f(7) ) = - f (0)= 0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询