两块等腰直角三角形的三角板如图放置。将△ABC固定不动,△DEF的直角顶点D放在△ABC的斜边的中点O处,且绕 5
两块等腰直角三角形的三角板如图放置。将△ABC固定不动,△DEF的直角顶点D放在△ABC的斜边的中点O处,且绕点O旋转过程中,两直角边的交点G,H始终在边AB,CB上(1...
两块等腰直角三角形的三角板如图放置。将△ABC固定不动,△DEF的直角顶点D放在△ABC的斜边的中点O处,且绕点O旋转过程中,两直角边的交点G,H始终在边AB,CB上
(1)在旋转过程中,BG和CH有何大小关系?请说明你的理由
(2)AB=CB=4cm,在旋转过程中,四边形GBHD的面积是否改变?若不变,求出它的值;若改变,求出它的取值范围 展开
(1)在旋转过程中,BG和CH有何大小关系?请说明你的理由
(2)AB=CB=4cm,在旋转过程中,四边形GBHD的面积是否改变?若不变,求出它的值;若改变,求出它的取值范围 展开
5个回答
展开全部
解:连接BD.
(1)∵△ABC,△DEF都是等腰直角三角形,而D是AC的中点,
∴∠C=∠ABD=45°,BD=CD,∠CDH+∠BDH=90°,
∠EDB+∠BDH=90°,
∴∠CDH=∠EDB,
∴△BDG≌△CDH,
∴BG=CH.
(2)在旋转过程中四边形GBHD的面积不变,
∵△BDG≌△CDH,
∴S四边形GBHD=S△BDC,而AB=CB=4cm,
D是CA的中点,
∴S△BDC= 12S△ABC= 12×4×4× 12=4,
∴S四边形GBHD=4.
(1)∵△ABC,△DEF都是等腰直角三角形,而D是AC的中点,
∴∠C=∠ABD=45°,BD=CD,∠CDH+∠BDH=90°,
∠EDB+∠BDH=90°,
∴∠CDH=∠EDB,
∴△BDG≌△CDH,
∴BG=CH.
(2)在旋转过程中四边形GBHD的面积不变,
∵△BDG≌△CDH,
∴S四边形GBHD=S△BDC,而AB=CB=4cm,
D是CA的中点,
∴S△BDC= 12S△ABC= 12×4×4× 12=4,
∴S四边形GBHD=4.
展开全部
(1)△BAE≌△CAD,
理由如下:
∵∠BAC=∠DAE=90°
∴∠BAE=∠DAC
又∵AB=AC
∠B=∠ADC=45°
∴△BAE≌△CAD
(2)证明:
∵△BAE≌△CAD
∴∠BEA=∠ADC
又∵∠ADE=45°
∴∠BEA+∠CDE=45°
又∵∠DEA=45°
∴∠CDE+∠DEC=90°
∴∠BCD=90°
即DC⊥BE。
理由如下:
∵∠BAC=∠DAE=90°
∴∠BAE=∠DAC
又∵AB=AC
∠B=∠ADC=45°
∴△BAE≌△CAD
(2)证明:
∵△BAE≌△CAD
∴∠BEA=∠ADC
又∵∠ADE=45°
∴∠BEA+∠CDE=45°
又∵∠DEA=45°
∴∠CDE+∠DEC=90°
∴∠BCD=90°
即DC⊥BE。
追问
不是,ADE同在△ABC的斜边上
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)在旋转过程中,BG=CH,很容易证明旋转之后形成的三角形是全等三角形
(2)AB=CB=4cm,在旋转过程中,四边形GBHD的面积不变,面积恒等于4*2/2=4平方厘米
(2)AB=CB=4cm,在旋转过程中,四边形GBHD的面积不变,面积恒等于4*2/2=4平方厘米
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:连接BD.
(1)∵△ABC,△DEF都是等腰直角三角形,而D是AC的中点,
∴∠C=∠ABD=45°,BD=CD,∠CDH+∠BDH=90°,
∠EDB+∠BDH=90°,
∴∠CDH=∠EDB,
∴△BDG≌△CDH,
∴BG=CH.
(2)在旋转过程中四边形GBHD的面积不变,
∵△BDG≌△CDH,
∴S四边形GBHD=S△BDC,而AB=CB=4cm,
D是CA的中点,
∴S△BDC= 12S△ABC= 12×4×4× 12=4,
∴S四边形GBHD=4.
(1)∵△ABC,△DEF都是等腰直角三角形,而D是AC的中点,
∴∠C=∠ABD=45°,BD=CD,∠CDH+∠BDH=90°,
∠EDB+∠BDH=90°,
∴∠CDH=∠EDB,
∴△BDG≌△CDH,
∴BG=CH.
(2)在旋转过程中四边形GBHD的面积不变,
∵△BDG≌△CDH,
∴S四边形GBHD=S△BDC,而AB=CB=4cm,
D是CA的中点,
∴S△BDC= 12S△ABC= 12×4×4× 12=4,
∴S四边形GBHD=4.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)△BAE≌△CAD,
理由如下:
∵∠BAC=∠DAE=90°
∴∠BAE=∠DAC
又∵AB=AC
∠B=∠ADC=45°
∴△BAE≌△CAD
(2)证明:
∵△BAE≌△CAD
∴∠BEA=∠ADC
又∵∠ADE=45°
∴∠BEA+∠CDE=45°
又∵∠DEA=45°
∴∠CDE+∠DEC=90°
∴∠BCD=90°
即DC⊥BE。
理由如下:
∵∠BAC=∠DAE=90°
∴∠BAE=∠DAC
又∵AB=AC
∠B=∠ADC=45°
∴△BAE≌△CAD
(2)证明:
∵△BAE≌△CAD
∴∠BEA=∠ADC
又∵∠ADE=45°
∴∠BEA+∠CDE=45°
又∵∠DEA=45°
∴∠CDE+∠DEC=90°
∴∠BCD=90°
即DC⊥BE。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询