④高中数学:设b>0, 数列{an}满足a1=b , an=nba n-1 / a n-1 +2n-2 (n≥2).
设b>0,数列{an}满足a1=b,an=nban-1/an-1+2n-2(n≥2).【注意:a的第n项=n乘以b乘以a的第n-1项(下标)除以a的第n-1项(下标)+2...
设b>0, 数列{an}满足a1=b , an=nba n-1 / a n-1 +2n-2 (n≥2).
【注意:
a的第n项=n乘以b乘以a的第n-1项(下标) 除以 a的第n-1项(下标)+2n-2的和】求出 :数列{an}的通项公式
【写写过程】并且说说你用的求解方法,
n ≧2 有什么用呢?
上高二,刚刚学,真的不太会,真诚谢谢你哦 展开
【注意:
a的第n项=n乘以b乘以a的第n-1项(下标) 除以 a的第n-1项(下标)+2n-2的和】求出 :数列{an}的通项公式
【写写过程】并且说说你用的求解方法,
n ≧2 有什么用呢?
上高二,刚刚学,真的不太会,真诚谢谢你哦 展开
5个回答
展开全部
an=nba(n-1) /[a(n-1) +2n-2]
=n*b/[1+2(n-1)/a(n-1)]
所以n*b/an=1+2(n-1)/a(n-1)
设cn=n/an 则c(n-1)=(n-1)/a(n-1)
则b*cn=1+2c(n-1)
cn=(2/b)*c(n-1)+1/b
即cn-1/(b-2)=(2/b)[c(n-1)-1/(b-2)]
所以{cn-1/(b-2)}是公比为2/b的等比数列
首项=c1-1/(b-2)=1/a1-1/(b-2)=-2/b(b-2)
则cn-1/(b-2)=[-2/b(b-2)]*(2/b)^(n-1)=[-1/(b-2)]*(2/b)^n
所以cn=[1/(b-2)]*[1-(2/b)^n]
故an=n(b-2)/[1-(2/b)^n]
=n*b/[1+2(n-1)/a(n-1)]
所以n*b/an=1+2(n-1)/a(n-1)
设cn=n/an 则c(n-1)=(n-1)/a(n-1)
则b*cn=1+2c(n-1)
cn=(2/b)*c(n-1)+1/b
即cn-1/(b-2)=(2/b)[c(n-1)-1/(b-2)]
所以{cn-1/(b-2)}是公比为2/b的等比数列
首项=c1-1/(b-2)=1/a1-1/(b-2)=-2/b(b-2)
则cn-1/(b-2)=[-2/b(b-2)]*(2/b)^(n-1)=[-1/(b-2)]*(2/b)^n
所以cn=[1/(b-2)]*[1-(2/b)^n]
故an=n(b-2)/[1-(2/b)^n]
追问
前面的都懂
那n ≧2 有什么用呢?
上高二,刚刚学,真的不太会
追答
对,还应该验证上式只是n≧2的情况
当n=1时
a1=(b-2)/(1-2/b)=b(b-2)/(b-2)=b
与条件符合 (有些题不符合)
所以通项公式为an=n(b-2)/[1-(2/b)^n]
展开全部
解:
an = nba(n-1)/[a(n-1) +2(n-1)]
ana(n-1)=nba(n-1)-2(n-1)an
∵an≠0
∴上式=nb/an - 2(n-1)/a(n-1) = 1
令xn=n/an,则:
xn=2/bx(n-1)+1/b
当b≠2时:
∴xn - 1/(b-2) = 2/b [x(n-1) - 1/(b-2)]
这是公比为2/b的等比
(求解略)
当b=2时:
xn-x(n-1)=1/2
这是公差为1/2的等差
(求解略)
an = nba(n-1)/[a(n-1) +2(n-1)]
ana(n-1)=nba(n-1)-2(n-1)an
∵an≠0
∴上式=nb/an - 2(n-1)/a(n-1) = 1
令xn=n/an,则:
xn=2/bx(n-1)+1/b
当b≠2时:
∴xn - 1/(b-2) = 2/b [x(n-1) - 1/(b-2)]
这是公比为2/b的等比
(求解略)
当b=2时:
xn-x(n-1)=1/2
这是公差为1/2的等差
(求解略)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
an = nba(n-1)/[a(n-1) +2(n-1)]
ana(n-1)=nba(n-1)-2(n-1)an
∵an≠0
∴上式=nb/an - 2(n-1)/a(n-1) = 1
令xn=n/an,则:
xn=2/bx(n-1)+1/b
当b≠2时:
∴xn - 1/(b-2) = 2/b [x(n-1) - 1/(b-2)]
这是公比为2/
当b=2时:
xn-x(n-1)=1/2
这是公差为1/2
ana(n-1)=nba(n-1)-2(n-1)an
∵an≠0
∴上式=nb/an - 2(n-1)/a(n-1) = 1
令xn=n/an,则:
xn=2/bx(n-1)+1/b
当b≠2时:
∴xn - 1/(b-2) = 2/b [x(n-1) - 1/(b-2)]
这是公比为2/
当b=2时:
xn-x(n-1)=1/2
这是公差为1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
题目条件可以转换为
[(b^n)/(2^n)]*(n/a(n))=b^(n-1)/(2^n)+[b^(n-1)/(2^n-1)]*((n-1)/a(n-1))
下面就简单了
[(b^n)/(2^n)]*(n/a(n))=b^(n-1)/(2^n)+[b^(n-1)/(2^n-1)]*((n-1)/a(n-1))
下面就简单了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询