数学归纳法问题
用第一数学归纳法证明1.(n)(n+1)(n+2)可被6整除2.(n)(n+1)(n+2)(5n+3)可被24整除只要能说明解题重点就可...
用第一数学归纳法证明
1.(n)(n+1)(n+2)可被6整除
2.(n)(n+1)(n+2)(5n+3)可被24整除
只要能说明解题重点就可 展开
1.(n)(n+1)(n+2)可被6整除
2.(n)(n+1)(n+2)(5n+3)可被24整除
只要能说明解题重点就可 展开
1个回答
展开全部
1、n=1时,1*2*3=6能被6整除
假设n=k时k(k+1)(k+2)能被6整除
n=k+1时,(k+1)(k+2)(k+3) = k(k+1)(k+2) +3(k+1)(k+2)
k(k+1)(k+2)能被6整除
(k+1)(k+2)能被2整除,3(k+1)(k+2)能被6整除
所以(k+1)(k+2)(k+3) 能被6整除
所以命题成立
2、n=1成立,验证略
假设n=k,k(k+1)(k+2)(5k+3)能被24整除
(k+1)(k+2)(k+3)[5(k+1)+3]
=(k+1)(k+2)(k+3)[(5k+3)+5]
=(k+1)(k+2)[(k+3)(5k+3)+5k+15)]
=(k+1)(k+2)[(5k+3)(k+4)+12]
=(k+1)(k+2)(5k+3)(k+4) +12(k+1)(k+2)
(k+1)(k+2)(5k+3)能被24整除,
(k+1)(k+2)能被2整除,12(k+1)(k+2)能被24整除
所以(k+1)(k+2)(k+3)[5(k+1)+3]
所以命题成立
假设n=k时k(k+1)(k+2)能被6整除
n=k+1时,(k+1)(k+2)(k+3) = k(k+1)(k+2) +3(k+1)(k+2)
k(k+1)(k+2)能被6整除
(k+1)(k+2)能被2整除,3(k+1)(k+2)能被6整除
所以(k+1)(k+2)(k+3) 能被6整除
所以命题成立
2、n=1成立,验证略
假设n=k,k(k+1)(k+2)(5k+3)能被24整除
(k+1)(k+2)(k+3)[5(k+1)+3]
=(k+1)(k+2)(k+3)[(5k+3)+5]
=(k+1)(k+2)[(k+3)(5k+3)+5k+15)]
=(k+1)(k+2)[(5k+3)(k+4)+12]
=(k+1)(k+2)(5k+3)(k+4) +12(k+1)(k+2)
(k+1)(k+2)(5k+3)能被24整除,
(k+1)(k+2)能被2整除,12(k+1)(k+2)能被24整除
所以(k+1)(k+2)(k+3)[5(k+1)+3]
所以命题成立
追问
谢谢,请问既然说(k+1)(k+2)可以被3整除,那为什么不一开始就说(n),(n+1),(n+2)之中一定有一个有三的因子,至少有1个有2的因子,所以(n)(n+1)(n+2)是6的倍数?
追答
可以被2整除。当然可以啊,但是你说要用数学归纳法嘛,呵呵~
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询