如图,在△ABC中,AB=AC,∠BAC=a,且60°<a<120°,P为△ABC内部一点,且PC=AC,∠PCA=120°-a,求∠PBC的大小
详细的看http://zhidao.baidu.com/question/226857780.html初二水平...
详细的看 http://zhidao.baidu.com/question/226857780.html
初二水平 展开
初二水平 展开
4个回答
展开全部
解:在△ABC内取点D,使得PD//BC且BP=CD,连结AD
则易知四边形BCDP是等腰梯形
有∠PBC=∠DCB
因为AB=AC,所以∠ABC=∠ACB
则∠ABP=∠ACD
所以△ABP≌△ACD (SAS)
则AP=AD且∠BAP=∠CAD
在△ACP中,PC=AC,∠PCA=120°-a
则∠APC=∠PAC=(180°-∠PCA)/2=[180°-(120°-a)]/2=30°+a/2
又∠BAC=a,则∠BAP=∠BAC-∠PAC=a-(30°+a/2)=a-30°
所以∠PAD=∠BAC-∠BAP-∠CAD=a-2(a-30°)=60°
因为AP=AD,所以△PAD是等边三角形
则PD=AD
所以△PCD≌△ACD (SSS)
则∠PCD=∠ACD=∠PCA/2=60°-a/2
又∠BCA=∠CBA=(180°-∠BAC)/2=90°-a/2
则∠BCD=∠BCA-∠ACD=90°-a/2 -(60°-a/2)=30°
所以∠PBC=∠BCD=30°
展开全部
解:在△ABC内取点D,使得PD//BC且BP=CD,连结AD
则易知四边形BCDP是等腰梯形
有∠PBC=∠DCB
因为AB=AC,所以∠ABC=∠ACB
则∠ABP=∠ACD
所以△ABP≌△ACD (SAS)
则AP=AD且∠BAP=∠CAD
在△ACP中,PC=AC,∠PCA=120°-a
则∠APC=∠PAC=(180°-∠PCA)/2=[180°-(120°-a)]/2=30°+a/2
又∠BAC=a,则∠BAP=∠BAC-∠PAC=a-(30°+a/2)=a-30°
所以∠PAD=∠BAC-∠BAP-∠CAD=a-2(a-30°)=60°
因为AP=AD,所以△PAD是等边三角形
则PD=AD
所以△PCD≌△ACD (SSS)
则∠PCD=∠ACD=∠PCA/2=60°-a/2
又∠BCA=∠CBA=(180°-∠BAC)/2=90°-a/2
则∠BCD=∠BCA-∠ACD=90°-a/2 -(60°-a/2)=30°
所以∠PBC=∠BCD=30°
则易知四边形BCDP是等腰梯形
有∠PBC=∠DCB
因为AB=AC,所以∠ABC=∠ACB
则∠ABP=∠ACD
所以△ABP≌△ACD (SAS)
则AP=AD且∠BAP=∠CAD
在△ACP中,PC=AC,∠PCA=120°-a
则∠APC=∠PAC=(180°-∠PCA)/2=[180°-(120°-a)]/2=30°+a/2
又∠BAC=a,则∠BAP=∠BAC-∠PAC=a-(30°+a/2)=a-30°
所以∠PAD=∠BAC-∠BAP-∠CAD=a-2(a-30°)=60°
因为AP=AD,所以△PAD是等边三角形
则PD=AD
所以△PCD≌△ACD (SSS)
则∠PCD=∠ACD=∠PCA/2=60°-a/2
又∠BCA=∠CBA=(180°-∠BAC)/2=90°-a/2
则∠BCD=∠BCA-∠ACD=90°-a/2 -(60°-a/2)=30°
所以∠PBC=∠BCD=30°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
延长AP交BC于点Q,
由(1) (2) 可知∠CAP=30°+α/2,∠ABC=90°-α/2
∴∠BAP+∠ABC=60°
∴∠PQB=120°∴∠PQC=60°
在QC上取一点M,使QM=PQ,连接PM
则△PQM是等边三角形,∴∠PMC=120°,
在△ABQ和△CPM中
∠BAP=∠PCB,∠PQB=∠PMC,AB=AC=CP
∴△ABQ≌△CPM
∴BQ=PM=PQ
而∠PQB=120°,∴∠PBC=30°
由(1) (2) 可知∠CAP=30°+α/2,∠ABC=90°-α/2
∴∠BAP+∠ABC=60°
∴∠PQB=120°∴∠PQC=60°
在QC上取一点M,使QM=PQ,连接PM
则△PQM是等边三角形,∴∠PMC=120°,
在△ABQ和△CPM中
∠BAP=∠PCB,∠PQB=∠PMC,AB=AC=CP
∴△ABQ≌△CPM
∴BQ=PM=PQ
而∠PQB=120°,∴∠PBC=30°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
不会
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询