如图,△ABC中,∠BAC=90°,AB=AC,BD是角平分线,CE⊥BD于E.求证BD=2CE
2个回答
展开全部
证明:延长CE,交BA的延长线于F.
∠ABD=∠ACF(均为角F的余角);AB=AC;∠BAD=∠CAF=90°.
则⊿BAD≌⊿CAF,BD=CF.-----------------------------------(1)
∠CBE=∠FBE;BE=BE;∠BEC=∠BEF=90度.
则⊿BEC≌⊿BEF,CE=EF,CF=2CE.-----------------------(2)
所以,BD=2CE.
∠ABD=∠ACF(均为角F的余角);AB=AC;∠BAD=∠CAF=90°.
则⊿BAD≌⊿CAF,BD=CF.-----------------------------------(1)
∠CBE=∠FBE;BE=BE;∠BEC=∠BEF=90度.
则⊿BEC≌⊿BEF,CE=EF,CF=2CE.-----------------------(2)
所以,BD=2CE.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询