1个回答
展开全部
f(x)=x-3/2*x^2=-3/2(x^2-2/3x)=-3/2(x-1/3)^2+1/6<=1/6且f(x)在(0,1/3]上是增函数,下面用归纳法证明,
当n=1时,0<a1<1/2,显然成立,当n=2时,0<a2<=1/6<1/(2+1)也成立;
假设当n=k时,0<ak<1/(k+1)也成立,下面证明0<a(k+1)<1/(k+2)即可。
a(k+1)=f(ak)=ak-3/2*ak^2=-3/2(ak^2-2/3ak)=-3/2(ak-1/3)^2+1/6<=1/6,
由于f(x)在(0,1/3]上是增函数,则当0<ak<1/(k+1)时,a(k+1)=f(ak)也是增函数,则有
a(k+1)>f(0)=0,ak=0时,
a(k+1)<f(1/(k+1)),ak=1/(k+1)时,
f(1/(k+1))=1/(k+1)-3/2*1/(k+1)^2=1/(k+1)[1-3/2*1/(k+1)]=1/(k+1)*(2k-1)/[2(k+1)]=(2k-1)/[2(k+1)^2]
(2k-1)/[2(k+1)^2]-1/(k+2)=[(2k-1)(k+2)-2(k+1)^2]/[2(k+1)^2(k+2)]=(-k-4)/[2(k+1)^2(k+2)]<0,
故a(k+1)<f(1/(k+1))<1/(k+2),因此0<a(k+1)<1/(k+2),即该命题成立。
当n=1时,0<a1<1/2,显然成立,当n=2时,0<a2<=1/6<1/(2+1)也成立;
假设当n=k时,0<ak<1/(k+1)也成立,下面证明0<a(k+1)<1/(k+2)即可。
a(k+1)=f(ak)=ak-3/2*ak^2=-3/2(ak^2-2/3ak)=-3/2(ak-1/3)^2+1/6<=1/6,
由于f(x)在(0,1/3]上是增函数,则当0<ak<1/(k+1)时,a(k+1)=f(ak)也是增函数,则有
a(k+1)>f(0)=0,ak=0时,
a(k+1)<f(1/(k+1)),ak=1/(k+1)时,
f(1/(k+1))=1/(k+1)-3/2*1/(k+1)^2=1/(k+1)[1-3/2*1/(k+1)]=1/(k+1)*(2k-1)/[2(k+1)]=(2k-1)/[2(k+1)^2]
(2k-1)/[2(k+1)^2]-1/(k+2)=[(2k-1)(k+2)-2(k+1)^2]/[2(k+1)^2(k+2)]=(-k-4)/[2(k+1)^2(k+2)]<0,
故a(k+1)<f(1/(k+1))<1/(k+2),因此0<a(k+1)<1/(k+2),即该命题成立。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询