已知等边△ABC,如图,∠B,∠C的平分线相交于点O,BO,CO的垂直平分线分别交BC于点E F,你能得到BE=EF=FC吗?
3个回答
展开全部
可以
首先将EO,FO连接起来,由于是垂直平分线可以得到BEO,CFO是等腰三角形。
所以BE=EO CF=FO
因为ABC是等边三角形,BO CO分别是平分线
所以∠OBE=∠BOE=∠FOC=∠OCF=30°
所以∠OEF=∠OFE=60°
所以三角形OEF是等边三角形
所以OE=OF=EF
因为BE=EO CF=FO (之前的)
所以BE=EF=FC
首先将EO,FO连接起来,由于是垂直平分线可以得到BEO,CFO是等腰三角形。
所以BE=EO CF=FO
因为ABC是等边三角形,BO CO分别是平分线
所以∠OBE=∠BOE=∠FOC=∠OCF=30°
所以∠OEF=∠OFE=60°
所以三角形OEF是等边三角形
所以OE=OF=EF
因为BE=EO CF=FO (之前的)
所以BE=EF=FC
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:连接OE、OF,
∵E为BO垂直平分线上的点,且∠OBC=30°,
∴BE=OE,∠EBO=∠EOB=30°,
∴∠OEF=∠EBO+∠EOB=60°,
同理,∠OFE=∠FCO+∠FOC=60°,
∴△OEF为等边三角形,
即EF=OE=BE,EF=OF=FC,
故E、F为BC的三等分点,
故该说法正确.
∵E为BO垂直平分线上的点,且∠OBC=30°,
∴BE=OE,∠EBO=∠EOB=30°,
∴∠OEF=∠EBO+∠EOB=60°,
同理,∠OFE=∠FCO+∠FOC=60°,
∴△OEF为等边三角形,
即EF=OE=BE,EF=OF=FC,
故E、F为BC的三等分点,
故该说法正确.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询