两底角的平分线相等的三角型是等腰三角形如何证明
展开全部
呵呵
反证法
设AB<AC,则∠ABC>∠ACB,(同一三角形中,大角对大边)
从而∠ABD>∠ACE.
在∠ABD内作∠DBF=∠ACE,
则在△FBC中,∠FBC>∠FCB,
得:FB<FC.
在CF上取CH=BF,过H作HK∥BF交CE于K,
在△BFD和△CHK中,
BF=CH,∠BFD=∠CHK,∠FBD=∠HCK
∴△BFD≌△CHK
∴BD=CK<CE,与已知BD=CE矛盾.
又若AB>AC,同理可得BD>CE,也与BD=CE矛盾
∴AB=AC
反证法
设AB<AC,则∠ABC>∠ACB,(同一三角形中,大角对大边)
从而∠ABD>∠ACE.
在∠ABD内作∠DBF=∠ACE,
则在△FBC中,∠FBC>∠FCB,
得:FB<FC.
在CF上取CH=BF,过H作HK∥BF交CE于K,
在△BFD和△CHK中,
BF=CH,∠BFD=∠CHK,∠FBD=∠HCK
∴△BFD≌△CHK
∴BD=CK<CE,与已知BD=CE矛盾.
又若AB>AC,同理可得BD>CE,也与BD=CE矛盾
∴AB=AC
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询