2个回答
展开全部
由已知可得x=-1和x=3是方程f'(x)=3x2-2ax+b=0的两根,
∴ -1+3=2a3, -1×3=b3,
∴a=3,b=-9
∴f'(x)=3(x+1)(x-3),
∴f(x)在x=-1处取得极大值,在x=3处取得极小值.
∵函数y=f(x)的图象与x轴有且只有3个交点,∴ {f(-1)>0f(3)<0.
又f(x)=x3-3x2-9x+c,∴ {-1-3+9+c>027-27-27+c<0,
解得-5<c<27.
∴ -1+3=2a3, -1×3=b3,
∴a=3,b=-9
∴f'(x)=3(x+1)(x-3),
∴f(x)在x=-1处取得极大值,在x=3处取得极小值.
∵函数y=f(x)的图象与x轴有且只有3个交点,∴ {f(-1)>0f(3)<0.
又f(x)=x3-3x2-9x+c,∴ {-1-3+9+c>027-27-27+c<0,
解得-5<c<27.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询