将两个全等的直角三角形ABC和DBE按图一方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°。

点E落在AB上,DE所在直线交AC所在直线于点F。(1)求证:AF+EF=DE;(2)若将图1的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其他条件不变,请在... 点E落在AB上,DE所在直线交AC所在直线于点F。
(1)求证:AF+EF=DE;
(2)若将图1的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其他条件不变,请在图2中画出变换后的图形,并直接写出(1)的结论是否仍然成立;
(3)若将图1中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图3.你认为(1)的结论还成立吗?若成立,写出证明过程;若不成立,请写出此时AF,EF与DE之间的关系,并说明理由。
展开
莫大于生
2011-11-12 · TA获得超过7768个赞
知道小有建树答主
回答量:725
采纳率:100%
帮助的人:961万
展开全部
(1)如图,连接BF,由△ABC≌△DBE,可得BC=BE,根据直角三角形的“HL”定理,易证△BCF≌△BEF,即可证得;
(2)同(1)得CF=EF,由△ABC≌△DBE,可得AC=DE,AC=AF+CF=AF+EF,即AF+EF=DE;
(3)同(1)得CF=EF,由△ABC≌△DBE,可得AC=DE,AF=AC+FC=DE+EF.

解答:(1)证明:连接BF,
∵△ABC≌△DBE,
∴BC=BE,
在△BCF和△BEF中,
{BC=BE∠BCF=∠BEF=90°BF=BF,
∴△BCF≌△BEF,
∴CF=EF;
(2)AF+EF=DE;
(3)同(1)得CF=EF,
∵△ABC≌△DBE,
∴AC=DE,
∴AF=AC+FC=DE+EF.

不懂再问!!祝您学习进步!!
1095971804
2012-11-05 · TA获得超过393个赞
知道答主
回答量:35
采纳率:0%
帮助的人:15.7万
展开全部

证明:

(1)       连接BF   ∵△ABC≌△DBE,   ∴BC=BE, AC=DE

∵∠ACB=∠DEB=90°

∴∠BCF=∠BEF=90°,   ∵BF=BF

∴Rt△BFC≌Rt△BFE     ∴CF=EF

∵AF+CF=AC,          ∴AF+EF=DE

(2)如图②。(1)中的结论还成立

(3)不成立。此时AF,EF与DE的关系是AF-EF=DE

理由:连接BF(如图③)

∵△ABC≌△DBE,   ∴BC=BE, AC=DE

∵∠ACB=∠DEB=90°

∴∠BCF=∠BEF=90°,   ∵BF=BF

∴Rt△BFC≌Rt△BFE     ∴CF=EF

∵AF-CF=AC,  ∴AF-EF=DE

∴(1)中正确的结论AF-EF=DE 

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
清语悠扬
2011-11-18 · TA获得超过1191个赞
知道答主
回答量:164
采纳率:0%
帮助的人:43.1万
展开全部
1)如图,连接BF,由△ABC≌△DBE,可得BC=BE,根据直角三角形的“HL”定理,易证△BCF≌△BEF,即可证得;
(2)同(1)得CF=EF,由△ABC≌△DBE,可得AC=DE,AC=AF+CF=AF+EF,即AF+EF=DE;
(3)同(1)得CF=EF,由△ABC≌△DBE,可得AC=DE,AF=AC+FC=DE+EF.

解答:(1)证明:连接BF,
∵△ABC≌△DBE,
∴BC=BE,
在△BCF和△BEF中,
{BC=BE∠BCF=∠BEF=90°BF=BF,
∴△BCF≌△BEF,
∴CF=EF;
(2)AF+EF=DE;
(3)同(1)得CF=EF,
∵△ABC≌△DBE,
∴AC=DE,
∴AF=AC+FC=DE+EF.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
21349981
2011-11-20 · TA获得超过534个赞
知道答主
回答量:32
采纳率:0%
帮助的人:12.1万
展开全部
(1)证明:连接BF,
∵△ABC≌△DBE,
∴BC=BE,
在△BCF和△BEF中,

∴△BCF≌△BEF,
∴CF=EF;

(2)AF+EF=DE;
故答案为:=;

(3)同(1)得CF=EF,
∵△ABC≌△DBE,
∴AC=DE,
∴AF=AC+FC=DE+EF.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
军向0h284c
2012-11-14 · TA获得超过2809个赞
知道小有建树答主
回答量:214
采纳率:100%
帮助的人:124万
展开全部
(1)如图,连接BF,由△ABC≌△DBE,可得BC=BE,根据直角三角形的“HL”定理,易证△BCF≌△BEF,即可证得;
(2)同(1)得CF=EF,由△ABC≌△DBE,可得AC=DE,AC=AF+CF=AF+EF,即AF+EF=DE;
(3)同(1)得CF=EF,由△ABC≌△DBE,可得AC=DE,AF=AC+FC=DE+EF.

解答:(1)证明:连接BF,
∵△ABC≌△DBE,
∴BC=BE,
在△BCF和△BEF中,
{BC=BE∠BCF=∠BEF=90°BF=BF,
∴△BCF≌△BEF,
∴CF=EF;
(2)AF+EF=DE;
(3)同(1)得CF=EF,
∵△ABC≌△DBE,
∴AC=DE,
∴AF=AC+FC=DE+EF.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(12)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式