将两个全等的直角三角形ABC和DBE按图一方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°。
点E落在AB上,DE所在直线交AC所在直线于点F。(1)求证:AF+EF=DE;(2)若将图1的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其他条件不变,请在...
点E落在AB上,DE所在直线交AC所在直线于点F。
(1)求证:AF+EF=DE;
(2)若将图1的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其他条件不变,请在图2中画出变换后的图形,并直接写出(1)的结论是否仍然成立;
(3)若将图1中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图3.你认为(1)的结论还成立吗?若成立,写出证明过程;若不成立,请写出此时AF,EF与DE之间的关系,并说明理由。 展开
(1)求证:AF+EF=DE;
(2)若将图1的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其他条件不变,请在图2中画出变换后的图形,并直接写出(1)的结论是否仍然成立;
(3)若将图1中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图3.你认为(1)的结论还成立吗?若成立,写出证明过程;若不成立,请写出此时AF,EF与DE之间的关系,并说明理由。 展开
14个回答
展开全部
(1)如图,连接BF,由△ABC≌△DBE,可得BC=BE,根据直角三角形的“HL”定理,易证△BCF≌△BEF,即可证得;
(2)同(1)得CF=EF,由△ABC≌△DBE,可得AC=DE,AC=AF+CF=AF+EF,即AF+EF=DE;
(3)同(1)得CF=EF,由△ABC≌△DBE,可得AC=DE,AF=AC+FC=DE+EF.
解答:(1)证明:连接BF,
∵△ABC≌△DBE,
∴BC=BE,
在△BCF和△BEF中,
{BC=BE∠BCF=∠BEF=90°BF=BF,
∴△BCF≌△BEF,
∴CF=EF;
(2)AF+EF=DE;
(3)同(1)得CF=EF,
∵△ABC≌△DBE,
∴AC=DE,
∴AF=AC+FC=DE+EF.
不懂再问!!祝您学习进步!!
(2)同(1)得CF=EF,由△ABC≌△DBE,可得AC=DE,AC=AF+CF=AF+EF,即AF+EF=DE;
(3)同(1)得CF=EF,由△ABC≌△DBE,可得AC=DE,AF=AC+FC=DE+EF.
解答:(1)证明:连接BF,
∵△ABC≌△DBE,
∴BC=BE,
在△BCF和△BEF中,
{BC=BE∠BCF=∠BEF=90°BF=BF,
∴△BCF≌△BEF,
∴CF=EF;
(2)AF+EF=DE;
(3)同(1)得CF=EF,
∵△ABC≌△DBE,
∴AC=DE,
∴AF=AC+FC=DE+EF.
不懂再问!!祝您学习进步!!
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1)如图,连接BF,由△ABC≌△DBE,可得BC=BE,根据直角三角形的“HL”定理,易证△BCF≌△BEF,即可证得;
(2)同(1)得CF=EF,由△ABC≌△DBE,可得AC=DE,AC=AF+CF=AF+EF,即AF+EF=DE;
(3)同(1)得CF=EF,由△ABC≌△DBE,可得AC=DE,AF=AC+FC=DE+EF.
解答:(1)证明:连接BF,
∵△ABC≌△DBE,
∴BC=BE,
在△BCF和△BEF中,
{BC=BE∠BCF=∠BEF=90°BF=BF,
∴△BCF≌△BEF,
∴CF=EF;
(2)AF+EF=DE;
(3)同(1)得CF=EF,
∵△ABC≌△DBE,
∴AC=DE,
∴AF=AC+FC=DE+EF.
(2)同(1)得CF=EF,由△ABC≌△DBE,可得AC=DE,AC=AF+CF=AF+EF,即AF+EF=DE;
(3)同(1)得CF=EF,由△ABC≌△DBE,可得AC=DE,AF=AC+FC=DE+EF.
解答:(1)证明:连接BF,
∵△ABC≌△DBE,
∴BC=BE,
在△BCF和△BEF中,
{BC=BE∠BCF=∠BEF=90°BF=BF,
∴△BCF≌△BEF,
∴CF=EF;
(2)AF+EF=DE;
(3)同(1)得CF=EF,
∵△ABC≌△DBE,
∴AC=DE,
∴AF=AC+FC=DE+EF.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)证明:连接BF,
∵△ABC≌△DBE,
∴BC=BE,
在△BCF和△BEF中,
,
∴△BCF≌△BEF,
∴CF=EF;
(2)AF+EF=DE;
故答案为:=;
(3)同(1)得CF=EF,
∵△ABC≌△DBE,
∴AC=DE,
∴AF=AC+FC=DE+EF.
∵△ABC≌△DBE,
∴BC=BE,
在△BCF和△BEF中,
,
∴△BCF≌△BEF,
∴CF=EF;
(2)AF+EF=DE;
故答案为:=;
(3)同(1)得CF=EF,
∵△ABC≌△DBE,
∴AC=DE,
∴AF=AC+FC=DE+EF.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)如图,连接BF,由△ABC≌△DBE,可得BC=BE,根据直角三角形的“HL”定理,易证△BCF≌△BEF,即可证得;
(2)同(1)得CF=EF,由△ABC≌△DBE,可得AC=DE,AC=AF+CF=AF+EF,即AF+EF=DE;
(3)同(1)得CF=EF,由△ABC≌△DBE,可得AC=DE,AF=AC+FC=DE+EF.
解答:(1)证明:连接BF,
∵△ABC≌△DBE,
∴BC=BE,
在△BCF和△BEF中,
{BC=BE∠BCF=∠BEF=90°BF=BF,
∴△BCF≌△BEF,
∴CF=EF;
(2)AF+EF=DE;
(3)同(1)得CF=EF,
∵△ABC≌△DBE,
∴AC=DE,
∴AF=AC+FC=DE+EF.
(2)同(1)得CF=EF,由△ABC≌△DBE,可得AC=DE,AC=AF+CF=AF+EF,即AF+EF=DE;
(3)同(1)得CF=EF,由△ABC≌△DBE,可得AC=DE,AF=AC+FC=DE+EF.
解答:(1)证明:连接BF,
∵△ABC≌△DBE,
∴BC=BE,
在△BCF和△BEF中,
{BC=BE∠BCF=∠BEF=90°BF=BF,
∴△BCF≌△BEF,
∴CF=EF;
(2)AF+EF=DE;
(3)同(1)得CF=EF,
∵△ABC≌△DBE,
∴AC=DE,
∴AF=AC+FC=DE+EF.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询