如图,在梯形ABCD中,AD‖BC,AB=CD=BC=6,AD=3,点M为边BC的中点,以M为顶点作角EMF=角B,射线ME交AB于点E

射线MF交腰CD于点F,连接EF。1求证:△MEF∽△BEM2若△BEM是以BM为腰的等腰三角形,求EF的长3若EF⊥CE,求BE的长。... 射线MF交腰CD于点F,连接EF。
1 求证:△MEF∽△BEM
2 若△BEM是以BM为腰的等腰三角形,求EF的长
3 若EF⊥CE,求BE的长。
展开
wenxindefeng6
高赞答主

2011-11-24 · 一个有才华的人
知道大有可为答主
回答量:1.4万
采纳率:100%
帮助的人:5918万
展开全部
1.证明:∵AB=CD.
∴梯形ABCD为等腰梯形,∠B=∠C;
又∠EMF=∠B,则:∠CMF=180度-∠EMF-∠BME=180度-∠B-∠BME=∠BEM.
∴⊿CMF∽⊿BEM,MF/EM=CM/BE=BM/BE.
∵MF/EM=BM/BE;∠EMF=∠B.
∴△MEF∽△BEM.
2.解:当BM=BE=3时:MF/ME=BM/BE=1,则MF=ME.
∴EF∥BC;又BE=3=AB/2.故EF为梯形的中位线,EF=(AD+BC)/2=9/2;
当ME=BM=3时:∠MEB=∠B=∠C=∠FMC.
连接DM.BM=BC/2=3=AD,又BM平行BM,则四边形ABMD为平行四边形.
∴∠DMC=∠B=∠FMC,即F与D重合,此时EF=CD=6.
3.【 估计应该是:EF⊥CE.】
解:∵EF⊥CF;∠CFM=∠BME=∠EFM.
∴∠EFM=45°=∠BME.
作EG⊥BM于G,则EG=GM;作AH⊥BM于H.BH=(BC-AD)/2=3/2,AH=√(AB²-BH²)=3√15/2.
设EG=GM=X,则BG=3-X.BG/BH=EG/AH,(3-X)/(3/2)=X/(3√15/2),X=(45-3√15)/14.
BE/BA=EG/AH,即BE/6=[(45-3√15)/14]/(3√15/2),BE=(6√15-6)/7.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式