若cosx=tanx,求sinx的值。
4个回答
展开全部
cosx=tanx=sinx/cosx
sinx=(cosx)^2
(sinx)^2+(cosx)^2=1
(sinx)^2+sinx=1
sinx=(√5-1)/2
sinx=(cosx)^2
(sinx)^2+(cosx)^2=1
(sinx)^2+sinx=1
sinx=(√5-1)/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
当终边在第二象限时,有sinx>0,cosx<0。此时,tanx的值等于直线的斜率,即tanx=-3 (tanx)^2=(sinx/cosx)^2 =(sinx)^2/[1-(sinx)^2],解得
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
sinx=(-1+√5)/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询