证明:对于任意两个向量a,b,都有||a|-|b||≤|a-b|≤|a|+|b|

拜托会的帮帮忙!... 拜托会的帮帮忙! 展开
preciousname
2011-12-11 · TA获得超过453个赞
知道小有建树答主
回答量:230
采纳率:100%
帮助的人:103万
展开全部
画个三角形。其中两边分别是向量a、b,剩下的第三边就是a-b了
向量加上那个绝对值符号就是求模,也就是向量长度的意思。因此这个证明就相当于
a、b两边的长度差<=第三边的长<=a、b两边的长度和。
而这个不等式就是三角形的基本定理。
本来在三角形中等号是不会成立的。但是这里a、b是任意的,所以可以为0,b为0的时候等号就成立,此时不是三角形,跟前面的证明不矛盾。
polymer2007
2011-12-11 · TA获得超过1390个赞
知道小有建树答主
回答量:440
采纳率:0%
帮助的人:480万
展开全部
设θ=<a,b>
先证左边:||a|-|b||≤|a-b|
由|a-b|²-||a|-|b||²=(a²-2|a||b|cosθ+b²)-(a²-2|a||b|+b²)=2|a||b|(1-cosθ)≥0
得|a-b|≥||a|-|b||
再证右边:|a-b|≤|a|+|b|
由|a-b|²-||a|+|b||²=(a²-2|a||b|cosθ+b²)-(a²+2|a||b|+b²)= -2|a||b|(1+cosθ)≤0
得|a-b|≤|a|+|b|
综述可知:||a|-|b||≤|a-b|≤|a|+|b|
(注:你也可以用反证法一步一步推,推出的结论成立就行。)
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式