线代……设A可逆,讨论A与A的伴随矩阵的特征值特征向量之间的关系。

Dilraba学长
高粉答主

2020-07-17 · 听从你心 爱你所爱 无问西东
Dilraba学长
采纳数:1107 获赞数:411028

向TA提问 私信TA
展开全部

A与A^-1的特征值互为倒数, 且特征向量相同。矩阵的特征向量是矩阵理论上的重要概念之一,它有着广泛的应用。数学上,线性变换的特征向量(本征向量)是一个非简并的向量,其方向在该变换下不变。该向量在此变换下缩放的比例称为其特征值(本征值)。

扩展资料

从数学上看,如果向量v与变换A满足Av=λv,则称向量v是变换A的一个特征向量,λ是相应的特征值。这一等式被称作“特征值方程”。

假设它是一个线性变换,那么v可以由其所在向量空间的一组基表示为:

其中vi是向量在基向量上的投影(即坐标),这里假设向量空间为n 维。由此,可以直接以坐标向量表示。利用基向量,线性变换也可以用一个简单的矩阵乘法表示。上述的特征值方程可以表示为:

但是,有时候用矩阵形式写下特征值方程是不自然甚或不可能的。例如在向量空间是无穷维的时候,上述的弦的情况就是一例。取决于变换和它所作用的空间的性质,有时将特征值方程表示为一组微分方程更好。若是一个微分算子,其特征向量通常称为该微分算子的特征函数。例如,微分本身是一个线性变换因为(若M和N是可微函数,而a和b是常数)。

陌界滴9683
2011-12-12 · TA获得超过6.1万个赞
知道大有可为答主
回答量:3.1万
采纳率:0%
帮助的人:3872万
展开全部
个人认为由于A*=1A1B (B为A的逆)所以能导出特征值关系,但是2003年数一大题第一个答案却不是这样,感觉再出得可能性不大。。
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式