3个回答
展开全部
证明
∵(a-b) ²=a²+b²-2ab
(b-c) ²=b²+c²-2ac
(c-a) ²=a²+c²-2ac
∴ (a-b) ²+(b-c) ²+(c-a) ²
=2a²+2b²+2c²-2ab-2bc-2ca
=2(a²+b²+c²)-2(ab+bc+ca)
∵a²+b²+c²=ab+bc+ca
∴(a-b) ²+(b-c) ²+(c-a) ²=0
∴a=b,b=c,c=a
∴a=b=c
∴此三角形为等边三角形
∵(a-b) ²=a²+b²-2ab
(b-c) ²=b²+c²-2ac
(c-a) ²=a²+c²-2ac
∴ (a-b) ²+(b-c) ²+(c-a) ²
=2a²+2b²+2c²-2ab-2bc-2ca
=2(a²+b²+c²)-2(ab+bc+ca)
∵a²+b²+c²=ab+bc+ca
∴(a-b) ²+(b-c) ²+(c-a) ²=0
∴a=b,b=c,c=a
∴a=b=c
∴此三角形为等边三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明
a²+b²+c²=ab+bc+ca
a²+b²+c²-ab-bc-ac=0
a²-ab+ac+b²+c²-bc=0
化为:
a²-(b+c)a+(b²+c²-bc)=0
解a= { (b+c)+√[(b+c)²-4(b²+c²-bc)] }
/2或= { (b+c)-√[(b+c)²-4(b²+c²-bc)] }
/2
故化√里有(b+c)²-4(b²+c²-bc)= -3(b-c)²≥ 0,在-3(b-c)²≥ 0式中显然看出只有b=c,a才有实数解。
同理解关于b²-(a+c)b+a²+c²-ac=0 得a=c, b才有实数解。故a=b=c,故为等边三角形
a²+b²+c²=ab+bc+ca
a²+b²+c²-ab-bc-ac=0
a²-ab+ac+b²+c²-bc=0
化为:
a²-(b+c)a+(b²+c²-bc)=0
解a= { (b+c)+√[(b+c)²-4(b²+c²-bc)] }
/2或= { (b+c)-√[(b+c)²-4(b²+c²-bc)] }
/2
故化√里有(b+c)²-4(b²+c²-bc)= -3(b-c)²≥ 0,在-3(b-c)²≥ 0式中显然看出只有b=c,a才有实数解。
同理解关于b²-(a+c)b+a²+c²-ac=0 得a=c, b才有实数解。故a=b=c,故为等边三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询