已知函数f(x)=x^2+2x+alnx(a∈R),当a=-4时,求f(x)的最小值,2.若函数f(x)在区间(0.1)上为单调函数,求

3.当t≥1时,不等式f(2t-1)≥2f(t)-3恒成立,求实数a的取值范围,五点之前求答案。。详细过程。... 3.当t≥1时,不等式f(2t-1)≥2f(t)-3恒成立,求实数a的取值范围,五点之前求答案。。详细过程。 展开
 我来答
允靖瑶03W
2011-12-29 · TA获得超过106个赞
知道答主
回答量:172
采纳率:0%
帮助的人:89.3万
展开全部
1.f(x)=x^2+2x-4lnx,f'(x)=2x+2-4/x令f'(x)=0得x=1/2,当x>1/2时f'(x)>0,f(x)单调增,当0<x<1/2时,f'(x)<0,f(x)单调减,所以f(x)在x=1/2取得最小值为(1/2)^2+2*(1/2)-4ln(1/2)=5/4+4ln2
2.第二问不全还是没显示全?
3.不等式f(2t-1)≥2f(t)-3恒成立即f(2t-1)-2f(t)+3≥0恒成立,所以(2t-1)^2+2(2t-1)+aln(2t-1)-t^2-2t+alnt+3≥0恒成立,化简:2(t-1)^2+aln[(2t-1)/t^2]≥0恒成立,因为2(t-1)^2恒大于等于零,所以只要aln[(2t-1)/t^2]≥0恒成立,因为t^2-2t+1≥0所以t^2≥2t-1,所以(2t-1)/t^2≤1,即aln[(2t-1)/t^2≤0,所以a≤0
0小叼0
2011-12-29
知道答主
回答量:9
采纳率:0%
帮助的人:4.1万
展开全部
(1)f(x)=x^2+2x-4lnx;定义域:x>0
f'(x)=2x+2-4/x=2(x-1)(x+2)/x
令f'(x)=0,x=1,x=-2(舍去),x=0
0<x<1,f'(x)>0,f(x)单调递减;x>1,f'(x)<0,f(x)单调递增
当x=1时,f(x)min=f(1)=4
(2) 不全
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式