1个回答
展开全部
解析:
证法一:分别在a、b、c上取点A、B、C并使AO = BO = CO.设l经过O,在l上取一点P,在△POA、△POB、△POC中,
∵ PO公用,AO = BO = CO,∠POA =∠POB=∠POC,
∴ △POA≌△POB≌△POC
∴ PA = PB = PC.取AB中点D.连结OD、PD,则OD⊥AB,PD⊥AB,
∵
∴ AB⊥平面POD
∵ PO平面POD.
∴ PO⊥AB.
同理可证 PO⊥BC
∵ ,,
∴ PO⊥α,即l⊥α
若l不经过O时,可经过O作∥l.用上述方法证明⊥α,
∴ l⊥α.
证法二:采用反证法
假设l不和α垂直,则l和α斜交于O.
同证法一,得到PA = PB = PC.
过P作于,则,O是△ABC的外心.因为O也是△ABC的外心,这样,△ABC有两个外心,这是不可能的.
∴ 假设l不和α垂直是不成立的.
∴ l⊥α
若l不经过O点时,过O作∥l,用上述同样的方法可证⊥α,
∴ l⊥α
证法一:分别在a、b、c上取点A、B、C并使AO = BO = CO.设l经过O,在l上取一点P,在△POA、△POB、△POC中,
∵ PO公用,AO = BO = CO,∠POA =∠POB=∠POC,
∴ △POA≌△POB≌△POC
∴ PA = PB = PC.取AB中点D.连结OD、PD,则OD⊥AB,PD⊥AB,
∵
∴ AB⊥平面POD
∵ PO平面POD.
∴ PO⊥AB.
同理可证 PO⊥BC
∵ ,,
∴ PO⊥α,即l⊥α
若l不经过O时,可经过O作∥l.用上述方法证明⊥α,
∴ l⊥α.
证法二:采用反证法
假设l不和α垂直,则l和α斜交于O.
同证法一,得到PA = PB = PC.
过P作于,则,O是△ABC的外心.因为O也是△ABC的外心,这样,△ABC有两个外心,这是不可能的.
∴ 假设l不和α垂直是不成立的.
∴ l⊥α
若l不经过O点时,过O作∥l,用上述同样的方法可证⊥α,
∴ l⊥α
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询