如图,在正方形ABCD中,E、F分别是边BC、CD的中点,AE交BF于点H,CG∥AE交BF于点G.下列结论:①tan∠HBE
如图,在正方形ABCD中,E、F分别是边BC、CD的中点,AE交BF于点H,CG∥AE交BF于点G.下列结论:①tan∠HBE=cot∠HEB;②CG?BF=BC?CF;...
如图,在正方形ABCD中,E、F分别是边BC、CD的中点,AE交BF于点H,CG∥AE交BF于点G.下列结论:①tan∠HBE=cot∠HEB;②CG?BF=BC?CF;③BH=FG;④BC2CF2=BGGF.其中正确的序号是______.
展开
展开全部
①∵在正方形ABCD中,E、F分别是边BC、CD的中点,
∴Rt△ABE≌Rt△BCF,
∴∠BEA=∠CFB,
∵CG∥AE,
∴∠GCB=∠AEB
∴∠CFG=∠GCB,
∴∠CFG+∠GCF=90°即△CGF为直角三角形,
∴CG∥AE交BF于点G,
∴△BHE也为直角三角形,
∴tan∠HBE=cot∠HEB;
∴①正确.
②由①可得△CGF∽△BCF,
∴
=
,
∴CG?BF=BC?CF,
∴②正确;
③由①得△BHE≌△CGF,
∴BH=CG,而不是BH=FG
∴③BH=FG错误;
④∵△BCG∽△BCF,
∴
=
,即BC2=BG?BF,
同理CF2=BF?GF,
∴
=
,
∴④正确,综上所述,正确的有①②④.
故答案是:①②④.
∴Rt△ABE≌Rt△BCF,
∴∠BEA=∠CFB,
∵CG∥AE,
∴∠GCB=∠AEB
∴∠CFG=∠GCB,
∴∠CFG+∠GCF=90°即△CGF为直角三角形,
∴CG∥AE交BF于点G,
∴△BHE也为直角三角形,
∴tan∠HBE=cot∠HEB;
∴①正确.
②由①可得△CGF∽△BCF,
∴
CG |
BC |
CF |
BF |
∴CG?BF=BC?CF,
∴②正确;
③由①得△BHE≌△CGF,
∴BH=CG,而不是BH=FG
∴③BH=FG错误;
④∵△BCG∽△BCF,
∴
BC |
BF |
BG |
BC |
同理CF2=BF?GF,
∴
BC2 |
CF2 |
BG |
GF |
∴④正确,综上所述,正确的有①②④.
故答案是:①②④.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询